一种基于人工智能的跨校区联动考勤方法和系统技术方案

技术编号:37721079 阅读:17 留言:0更新日期:2023-06-02 00:20
本发明专利技术公开了一种基于人工智能的跨校区联动考勤方法和系统,属于大学生考勤技术领域,包括服务器、人数识别模块、点名模块;所述人数识别模块用于识别教室内的人数,计算出勤率,获取当前学校具有的上课教室,根据上课教室建立识别库,识别当前上课教室的编号,根据上课教室编号在识别库中匹配到对应的识别模型,当开始上课后,采集当前上课教室的监控图像,将采集的监控图像发送到识别模型中,获得当前上课教室内的学生数量,获取当前课程应到学生数量,根据采集学生数量和应到学生数量计算当前课程的出勤率,并将计算的出勤率发送给显示端进行显示;所述点名模块用于老师进行点名,获取当前课程的出勤率。获取当前课程的出勤率。获取当前课程的出勤率。

【技术实现步骤摘要】
一种基于人工智能的跨校区联动考勤方法和系统


[0001]本专利技术属于大学生考勤
,具体是一种基于人工智能的跨校区联动考勤方法和系统。

技术介绍

[0002]随着信息化的发展,各学校招生规模的不断扩大,众多学生的考勤管理越来越复杂,而考勤管理在学校中有着举足轻重的作用,关系到学分增减、期末考评和对学生学习情况的了解。传统的考勤工作通常采用人工点名的方式,由老师或学生干部记录学生上课出勤情况及留宿情况,这不仅浪费人力物力,而且也无法保证准确性和透明性,给管理带来了许多不便,尤其是对于因为特殊情况而选择跨校区选课的学生,进一步的增加考勤的难度;因此,目前需要一种基于人工智能的跨校区联动考勤方法和系统,用于解决大学生上课考勤的问题。

技术实现思路

[0003]为了解决上述方案存在的问题,本专利技术提供了一种基于人工智能的跨校区联动考勤方法和系统。
[0004]本专利技术的目的可以通过以下技术方案实现:
[0005]一种基于人工智能的跨校区联动考勤系统,包括服务器、人数识别模块、点名模块;
[0006]所述人数识别模块用于识别教室内的人数,计算出勤率,获取当前学校具有的上课教室,根据上课教室建立识别库,识别当前上课教室的编号,根据上课教室编号在识别库中匹配到对应的识别模型,当开始上课后,采集当前上课教室的监控图像,将采集的监控图像发送到识别模型中,获得当前上课教室内的学生数量,获取当前课程应到学生数量,根据采集学生数量和应到学生数量计算当前课程的出勤率,并将计算的出勤率发送给显示端进行显示;
[0007]所述点名模块用于老师进行点名,获取当前课程的出勤率,根据出勤率向老师推荐点名人数,由老师人工选择需要点名的人数,获取当前课程的学生信息,对获得的学生信息进行更新,获得点名信息,识别点名信息中的跨校区上课学生信息,将跨校区上课学生信息列为必点名信息,将剩余的点名信息标记为随机信息,设置优先值公式,根据优先值公式进行排序,获取老师选择的点名数量,设置排序值,根据排序值选择对应数量的排序后随机信息用于点名,在将剩余的点名数量在剩余的随机信息中随机选择,完成点名学生的设置,进行点名。
[0008]进一步地,根据上课教室建立识别库的方法包括:
[0009]获取所有上课教室的平面图,将相同的上课教室平面图进行标记,获取具有标记的平面图对应的上课教室内历史监控录像,根据监控录像将识别当前教室的监控数据采集是否相同,将监控数据相同的上课教室标记为相同教室,将未被标记的上课教室平面图标
记为建模教室,从相同教室平面图中任选一个标记为建模教室;
[0010]建立训练模型,训练模型根据历史监控录像建立若干组训练集,构建人工智能模型;通过训练集对人工智能模型进行训练,将训练成功的人工智能模型标记为识别模型,并打上对应的建模教室标签,建立数据库,将识别模型储存到数据库,将当前的数据库标记为识别库。
[0011]进一步地,建立训练模型的方法包括:
[0012]设置图像识别单元,获取上课教室的监控图像,通过图像识别单元识别监控图像中具有的座位数,计算座位数具有的排列数,建立模拟模型,模拟模型根据排列数和对应的排列方式进行监控图像模拟,获得对应的模拟图像和学生人数,将一组模拟图像和学生人数作为一个训练集;将图像识别单元和模拟模型整合为训练模型。
[0013]进一步地,对获得的学生信息进行更新的方法包括:
[0014]设置对接单元,通过对接单元获取请假学生信息,将获得的请假学生信息与从云端信息库中获取的学生信息进行匹配,将匹配到的学生信息进行剔除,剩余的学生信息标记为点名信息。
[0015]进一步地,设置优先值公式的方法包括:
[0016]将随机信息中对应的学生标记为i,其中,i=1、2、
……
、n,n为正整数;获取当前学校内所有的学生的旷课记录和不及格记录,建立云端重点库,将随机信息与云端重点库中的信息进行匹配,获得对应学生的旷课次数和不及格次数,将随机信息中学生的旷课次数和不及格次数分别标记为Pi和Li,则优先值公式为Qi=b1
×
Pi+b2
×
Li,其中,b1和b2均为比例系数,1<b1≤2,0<b2≤1。
[0017]进一步地,还包括登录模块和云端信息库,所述登录模块用于老师进行系统登录,并选择需要进行点名的课程;所述云端信息库用于储存不同课程的学生信息,并设置不同的储存节点,将选择对应课程的学生信息储存到对应的储存节点中。
[0018]一种基于人工智能的跨校区联动考勤方法,具体方法包括:
[0019]步骤一:将学校的学生信息储存到云端;
[0020]步骤二:识别教室内的人数,计算出勤率;
[0021]步骤三:设置点名人数,获取点名信息,根据点名信息设置被点名的学生信息,进行点名。
[0022]与现有技术相比,本专利技术的有益效果是:实现根据历史学生的考勤记录和考试成绩进行动态选择考勤,加大对上述学生的重视力度,完成考勤的目的;通过建立云端信息库,实现不同校区的信息共享;通过将跨校区上课学生信息列为必点名信息,确保跨校区上课的学生出勤率,通过设置排序值,避免其他学生具有侥幸心理。
附图说明
[0023]为了更清楚地说明本专利技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本专利技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0024]图1为本专利技术原理框图。
具体实施方式
[0025]下面将结合实施例对本专利技术的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本专利技术一部分实施例,而不是全部的实施例。基于本专利技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本专利技术保护的范围。
[0026]如图1所示,一种基于人工智能的跨校区联动考勤系统,包括登录模块、云端信息库、服务器、人数识别模块、点名模块;
[0027]所述登录模块用于老师进行系统登录,并选择需要进行点名的课程。
[0028]所述云端信息库用于储存不同课程的学生信息,并根据不同课程、不同任课老师、不同上课时间等设置不同的储存节点,将选择对应课程的学生信息储存到对应的储存节点中;所述云端信息库是设置在云端上的,同一学校的不同校区均可访问云端信息库;当老师通过登录模块选择到对应的课程时,根据课程名称和地点匹配到对应的选择该课程的学生信息。
[0029]所述人数识别模块用于识别教室内的人数,计算出勤率,具体方法包括:
[0030]获取当前学校具有的上课教室,根据上课教室建立识别库,识别当前上课教室的编号,编号就是教室号,例如教D

320,根据上课教室编号在识别库中匹配到对应的识别模型,当开始上课后,采集当前上课教室的监本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种基于人工智能的跨校区联动考勤系统,其特征在于,包括服务器、人数识别模块、点名模块;所述人数识别模块用于识别教室内的人数,计算出勤率,获取当前学校具有的上课教室,根据上课教室建立识别库,识别当前上课教室的编号,根据上课教室编号在识别库中匹配到对应的识别模型,当开始上课后,采集当前上课教室的监控图像,将采集的监控图像发送到识别模型中,获得当前上课教室内的学生数量,获取当前课程应到学生数量,根据采集学生数量和应到学生数量计算当前课程的出勤率,并将计算的出勤率发送给显示端进行显示;所述点名模块用于老师进行点名,获取当前课程的出勤率,根据出勤率向老师推荐点名人数,由老师人工选择需要点名的人数,获取当前课程的学生信息,对获得的学生信息进行更新,获得点名信息,识别点名信息中的跨校区上课学生信息,将跨校区上课学生信息列为必点名信息,将剩余的点名信息标记为随机信息,设置优先值公式,根据优先值公式进行排序,获取老师选择的点名数量,设置排序值,根据排序值选择对应数量的排序后随机信息用于点名,在将剩余的点名数量在剩余的随机信息中随机选择,完成点名学生的设置,进行点名。2.根据权利要求1所述的一种基于人工智能的跨校区联动考勤系统,其特征在于,根据上课教室建立识别库的方法包括:获取所有上课教室的平面图,将相同的上课教室平面图进行标记,获取具有标记的平面图对应的上课教室内历史监控录像,根据监控录像将识别当前教室的监控数据采集是否相同,将监控数据相同的上课教室标记为相同教室,将未被标记的上课教室平面图标记为建模教室,从相同教室平面图中任选一个标记为建模教室;建立训练模型,训练模型根据历史监控录像建立若干组训练集,构建人工智能模型;通过训练集对人工智能模型进行训练,将训练成功的人工智能模型标记为识别模型,并打上对应的建模教室标签,建立数据库,将识别模型储存到数据库,将当前的数据库标记为识别库。3.根据权利要求2所述的一种基于人工智能的跨校区联动考勤系统,其特征在于,建立训练模型的方法包括:设置图像识别单元,获取上...

【专利技术属性】
技术研发人员:李媛媛汪传辉
申请(专利权)人:安徽渔之蓝教育软件技术有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1