本发明专利技术公开了一种基于改进的核密度估计算法的实名制认证活体检测方法,包括:随机向活体提示一组动作,获取活体完成动作的随机动态视频;从随机动态视频中采集N张训练集图片构建训练集以及采集M张测试集图片构建测试集;利用核密度估计算法计算训练集图片数据的概率密度函数;对训练集图片数据的概率密度函数进行滤波消噪;基于设定的动态占比阈值和滤波消噪后的训练集图片数据的概率密度函数判断所述随机动态视频是否为正常的动态视频;若随机动态视频为正常的动态视频,再对随机动态视频进行动作校验,若随机动态视频中识别到的各个动作及各个动作的先后顺序均正确,则动作校验通过,否则不通过。本发明专利技术可以提升活体的识别能力及识别准确率。识别能力及识别准确率。识别能力及识别准确率。
【技术实现步骤摘要】
基于改进的核密度估计算法的实名制认证活体检测方法
[0001]本专利技术涉及物联网
,尤其涉及一种基于改进的核密度估计算法的实名制认证活体检测方法。
技术介绍
[0002]在实名制校验中通常通过录制视频的形式对用户进行活体认证。目前存在伪造活体认证的现象,如用户利用软件对上传的静态照片检测人脸部的眼睛、嘴巴然后形成动态动作,最终生成动态视频,以伪造用于实名认证的视频。相关技术无法对活体的关键帧按场景进行真伪辨别。
技术实现思路
[0003]本专利技术所要解决的技术问题在于提供一种基于改进的核密度估计算法的实名制认证活体检测方法,可以提升活体的识别能力及识别准确率。
[0004]为解决上述技术问题,本专利技术采用如下所述的技术方案:
[0005]一种基于改进的核密度估计算法的实名制认证活体检测方法,其包括有如下步骤:随机向活体提示一组动作,获取活体在提示下完成动作的随机动态视频;从随机动态视频中采集N张训练集图片构建训练集以及采集M张测试集图片构建测试集,N、M为预设常数;基于训练集和测试集,利用核密度估计算法计算训练集图片数据的概率密度函数;对训练集图片数据的概率密度函数进行滤波消噪;根据人体特征设置动态占比阈值,基于设定的动态占比阈值和滤波消噪后的训练集图片数据的概率密度函数判断所述随机动态视频是否为正常的动态视频;若随机动态视频为正常的动态视频,再对随机动态视频进行动作校验,若随机动态视频中识别到的各个动作及各个动作的先后顺序均正确,则动作校验通过,否则不通过。
[0006]本专利技术的有益技术效果在于:上述的基于改进的核密度估计算法的实名制认证活体检测方法,利用核密度估计算法结合根据人体特征设置的动态占比阈值对视频数据进行处理,数据处理更具有针对性,能够更有效的降低数据处理的误差,解决了实名制认证过程中的无法辨别视频真伪的技术问题,能够有效的鉴别出利用静态照片模拟伪造的动态视频,从而提升活体的识别能力及识别准确率。此外,增加随机动作的校验功能,实名制认证时自动提示一组随机动作,需识别到的各个动作及各个动作的先后顺序均正确,方可通过校验,进一步加强验证的可靠性。
附图说明
[0007]图1为本专利技术的基于改进的核密度估计算法的实名制认证活体检测方法的流程示意图。
具体实施方式
[0008]为使本领域的普通技术人员更加清楚地理解本专利技术的目的、技术方案和优点,以下结合附图和实施例对本专利技术做进一步的阐述。
[0009]如图1所示,在本专利技术一个实施例中,基于改进的核密度估计算法的实名制认证活体检测方法包括有步骤S10至步骤S60。
[0010]S10、随机向活体提示一组动作,获取活体在提示下完成动作的随机动态视频。
[0011]本步骤为视频获取步骤,在活体用户通过APP进行实名制认证时执行。当设备检测到有用户在进行实名制认证操作时,随机产生一组随机动作数据,并根据随机动作数据向活体提示一组动作。提示的动作包括眨眼、摇头、张嘴、闭嘴等,每次提示的各个动作出现的先后顺序都是随机的。设备通过摄像头对活体进行拍摄,获取活体在提示下完成动作的随机动态视频,该随机动态视频用于后续的活体检测。
[0012]S20、从随机动态视频中采集N张训练集图片构建训练集以及采集M张测试集图片构建测试集。
[0013]本步骤为数据提取步骤,在获取随机动态视频后执行。通过将随机动态视频按照总时长T进行N等分,得到N个时长为T/N的小视频,然后采集每个时长为T/N的小视频的中间帧(或者其他帧)的图片作为训练集图片;通过将随机动态视频按照总时长T进行M等分,得到M个时长为T/M的小视频,然后采集每个时长为T/M的小视频的中间帧的图片作为测试集图片。
[0014]所述N、M为预设常数,可以根据实际需要进行设置,在本实施例中,N取值为20,M取值为3。
[0015]S30、基于训练集和测试集,利用核密度估计算法计算训练集图片数据的概率密度函数。
[0016]本步骤为数据处理步骤,核密度估计(Kernel density estimation),是一种用于估计概率密度函数的非参数方法。本步骤利用核密度估计算法计算训练集图片数据的概率密度函数。
[0017]步骤S30包括有步骤31至步骤S35:
[0018]S31、利用im2double函数将每个测试集图片的灰度图像转换为双精度的测试集图片数据T{a},利用im2double函数将每个训练集图片的灰度图像转换为双精度的训练集图片数据A{i}。
[0019]S32、基于测试集图片数据T{a}和训练集图片数据A{i},获取每个训练集图片数据与测试集图片数据的R,G,B三个维度差值:
[0020][0021]S33、计算每个训练集图片数据的核密度函数值,核密度公式为:
[0022][0023]S34、对随机动态视频进行处理得到图片,获取随机动态视频中图片的数据集合,得到图片的像素值,构造对应的零矩阵:zeros=(m n),其中,m,n分别为图片的像素矩阵值
的大小。
[0024]S35、将零矩阵循环累加N个训练集图片数据的核密度函数值,使处理后的训练集图片数据结合,计算训练集图片数据的概率密度函数:
[0025]f=zeros+RGB(i)
[0026][0027]其中,N为训练集图片的个数,h为带宽,在本实施例中,带宽h=0.855。
[0028]S40、对训练集图片数据的概率密度函数进行滤波消噪。
[0029]本步骤的目的是为了为过滤掉图像转数据过程中造成的异常数据。本专利技术实施例采用中值滤波法对训练集图片数据的概率密度函数进行滤波消噪,中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近真实值,从而消除孤立的噪声点。
[0030]Prb=medfilt2(Pr,[3,3])
[0031]S50、根据人体特征设置动态占比阈值,基于设定的动态占比阈值和滤波消噪后的训练集图片数据的概率密度函数判断所述随机动态视频是否为正常的动态视频。
[0032]本步骤为视频真伪鉴别步骤,用于识别伪造的用于实名认证的视频。步骤S50包括有步骤51至步骤S53:
[0033]S51、根据五官在脸部的占比设置动态占比阈值K
basic
。
[0034]在本实施例中,根据眼睛加嘴唇在脸部的占比设置动态占比阈值K
basic
。根据人类五官比例中“三庭五眼”比例。静态情况下,眼睛加嘴唇在脸部占比为10%左右。利用软件通过上传静态照片检测人脸部的眼镜、嘴巴形成动态动作。按照眼睛增加10%比例范围,嘴唇增加100%比例范围,可得到占比范围为14%左右。考虑动作处理误差。将比值设置到18%。即动态占比阈值设置到K
basic
=0.18。需要说明的是,在其他实施例中本文档来自技高网...
【技术保护点】
【技术特征摘要】
1.一种基于改进的核密度估计算法的实名制认证活体检测方法,其特征在于,所述基于改进的核密度估计算法的实名制认证活体检测方法包括有如下步骤:S10、随机向活体提示一组动作,获取活体在提示下完成动作的随机动态视频;S20、从随机动态视频中采集N张训练集图片构建训练集以及采集M张测试集图片构建测试集,N、M为预设常数;S30、基于训练集和测试集,利用核密度估计算法计算训练集图片数据的概率密度函数;S40、对训练集图片数据的概率密度函数进行滤波消噪;S50、根据人体特征设置动态占比阈值,基于设定的动态占比阈值和滤波消噪后的训练集图片数据的概率密度函数判断所述随机动态视频是否为正常的动态视频;S60、若随机动态视频为正常的动态视频,再对随机动态视频进行动作校验,若随机动态视频中识别到的各个动作及各个动作的先后顺序均正确,则动作校验通过,否则不通过。2.如权利要求1所述的基于改进的核密度估计算法的实名制认证活体检测方法,其特征在于,所述步骤S10进一步包括有步骤:S11、在检测到实名制认证操作时,随机产生一组随机动作数据;S12、根据随机动作数据向活体提示一组动作;S13、对活体进行拍摄,获取活体在提示下完成动作的随机动态视频。3.如权利要求1所述的基于改进的核密度估计算法的实名制认证活体检测方法,其特征在于,所述步骤S20进一步包括有步骤:S21、将随机动态视频按照总时长T进行N等分,得到N个时长为T/N的视频,然后采集每个时长为T/N的视频的中间帧的图片作为训练集图片;S22、将随机动态视频按照总时长T进行M等分,得到M个时长为T/M的视频,然后采集每个时长为T/M的视频的中间帧的图片作为测试集图片。4.如权利要求1所述的基于改进的核密度估计算法的实名制认证活体检测方法,其特征在于,所述步骤S30进一步包括有步骤:S31、利用im2double函数将每个测试集图片的灰度图像转换为双精度的测试集图片数据T{a},利用im2double函数将每个训练集图片的灰度图像转换为双精度的训练集图片数据A{i};S32、基于测试集图片数据T{a}和训练集图片数据A{i},获取每个训练集图片数据与测试集图片数据的R,G,B三个维度差值:S33、计算每个训练集图片数据的核密度函数值,公式为:S34、获取随机动态视频中图片的数据集合,得到图片的像素值,构造对应的...
【专利技术属性】
技术研发人员:詹振辉,左绘,沈江兵,周倜,王业民,蔡致通,汪浩航,
申请(专利权)人:天翼物联科技有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。