本发明专利技术涉及一种两段氨肟化反应制备酮肟的方法,公开了一种以酮、氨和双氧水为原料,通过两段氨肟化反应制备酮肟的方法及装置,该方法包括:在固态催化剂和去离子水存在的条件下,将酮、双氧水与氨进行肟化反应生成酮肟,反应液经有机溶剂萃取后,通过旋液分离和膜过滤分离后催化剂和少量水循环回到反应器,大部分的水和油相分别去后系统处理。本方法反应原料和反应液充分混合,反应效率高,双氧水利用率、酮的转化率、反应选择性均高,能耗低,适宜于工业化生产。业化生产。
【技术实现步骤摘要】
一种两段氨肟化反应制备酮肟的方法
[0001]本专利技术涉及一种两段氨肟化反应制备酮肟的方法,属于酮肟生产领域。
技术介绍
[0002]脂肪族酮或环脂族酮均能与羟胺发生缩合反应生成相应的酮肟,酮肟经贝克曼重排可生产内酰胺,其中丁酮制备丁酮肟、环己酮制备环己酮肟再经重排制备己内酰胺、环十二酮制备环十二酮肟再经重排制备十二内酰胺具有重要意义。
[0003]丁酮肟作为一种重要的化工原料,由于其低污染、低毒的特性,常被用于油墨、油漆、涂料的防结皮剂中,而且还可用作锅炉水化学除氧剂和建筑材料的中间体。丁酮肟的合成方法主要有羟胺法和氨肟化法。传统的羟胺法生产工艺,即通过羟胺盐与酮发生肟化反应,然后进行氨水中和、分离便可得到产品。此种方法工艺复杂,受外界环境因素影响大,成本高,已经不适应工业生产。随着技术的开发和革新,现在丁酮肟生产的主要方法为氨肟化法。
[0004]己内酰胺是重要的有机化工原料之一,外观为白色粉末或结晶体,有油性手感,主要用途是通过聚合生成聚酰胺切片,可进一步加工成锦纶纤维、工程塑料、塑料薄膜。己内酰胺工业生产方法主要有环己酮
‑
羟胺法、环己烷光亚硝化法、甲苯法等,其中环己酮
‑
羟胺法是目前工业上普遍用来生产环己酮肟的方法,环己酮
‑
羟胺法又分为硫酸羟胺法、磷酸羟胺法和氨肟化法,氨肟化法目前已成为己内酰胺生产的主流工艺。
[0005]十二内酰胺是制备尼龙12的单体,尼龙12由于其亚甲基链较长、酰胺基密度低,而具有密度小、热稳定性好、分解温度高的特点,凭借其耐低温、耐油、耐腐蚀、耐摩擦损耗等优良特性,被广泛应用于汽车的燃油管和冷却管、3d打印、光纤材料、运动器材及食品包装领域。十二内酰胺主要是由环十二酮通过氨肟化法得到环十二酮肟,再经贝克曼重排反应获得。
[0006]为解决反应效率和催化剂分离等问题,专利CN1939897A公开了一种三相氨肟化反应分离制备酮肟的方法,酮、双氧水和氨进行液液固三相非均相肟化反应生成酮肟,反应产物分相后,含催化剂的重相分离部分水后循环使用。该方法对分离催化剂有一定的促进,并有利于后续的贝克曼重排反应,但由于溶剂量大,能耗偏高。由于反应体系为非均相,混合程度不佳,生产效率不高。
[0007]专利CN112426957A公开了一种非均相氨肟化反应分离装置及方法,反应过程不另外加入溶剂,酮、双氧水和氨进行非均相肟化反应生成酮肟,为促进反应原料混合采用一种特殊结构的反应器,该反应器内部设置搅拌桨,通过搅拌桨控制器改变搅拌桨转动,并实现搅拌桨上下移动,控制复杂,目前不具备工业推广前景。由于非均相氨肟化反应体系中没有有机溶剂,而环己酮肟微溶于水,反应产物直接进行膜过滤分离效率低下,需要设置大量膜组件。
[0008]微界面反应器可实现气液的超细破碎并形成微界面体系,大大增加比表面积,可广泛应用于加氢、氧化、羰基化、烷基化、过氧化、氯化、水合、酯化、水解等反应过程,可以成
倍提高反应效率。
[0009]超重力反应器用在气液、液液体系上能强化传质过程,而且设备的体积比传统的分离设备大大缩小、能用于大气量等。超重力技术主要是通过强化接触过程来提高转化率和反应速率。
[0010]综上,针对现有技术存在的不足,亟待找到一种非均相反应效率高、双氧水的有效利用率高、催化剂利用率高且适宜于工业化生产工艺。
技术实现思路
[0011]本专利技术的目的在于利用非均相氨肟化反应的特点,提供一种克服现有技术不足,解决非均相反应体系分布不均匀导致的反应效率差的两段氨肟化反应制备酮肟的方法,提高氨肟化反应效率,减少催化剂流失,延长催化剂寿命,适宜工业化生产。
[0012]本专利技术的目的通过下述方式实现:
[0013]一种两段氨肟化反应制备酮肟的方法,在固态催化剂和去离子水存在条件下,酮、氨、双氧水在两段氨肟化反应器中进行三相非均相反应生成酮肟。反应液经有机溶剂萃取后,在专有分离设备中分离催化剂后,大部分水和油分别去后系统处理,含催化剂的浊液返回反应系统循环使用。
[0014]进一步的,还包括一种固态催化剂的制备方法:
[0015]S1:按照质量份数,将50
‑
80份的钛硅分子筛,200
‑
600份去离子水,3
‑
7份r
‑
氨基丙基三乙氧基硅烷,30
‑
50℃超声处理20
‑
30min,过滤,取出烘干,再放入反应器;
[0016]S2:在反应器中再加入0.1
‑
2.5份的丙烯酸铁、0.1
‑
0.7份丙烯酸铝,0.3
‑
0.8份的丙烯酸镍,2
‑
6份三乙胺,均匀分散在200
‑
300份的N,N
‑
二甲基甲酰胺(DMF)中,50
‑
70℃搅拌30
‑
100min,过滤,用无水乙醇清洗;
[0017]S3:固体于100
‑
120℃下干燥过夜,在氢气氛围,500
‑
650℃焙烧3
‑
6h,得到M
‑
TS
‑
1;
[0018]S4:按照质量份数,将50
‑
60份的M
‑
TS
‑
1,200
‑
300份去离子水,0.3
‑
1.5份2
‑
氨基吡啶,1
‑
3份磷钨酸,30
‑
50℃超声处理10
‑
15h,过滤,取出烘干得到固体催化剂。
[0019]进一步的,所述的酮为脂族酮、环脂族酮或芳香族酮,优选地,酮为丁酮或碳原子为3
‑
8的脂族酮。
[0020]进一步的,所述两段反应器为强化混合反应器与釜式反应器串联组成的反应系统。优选地,强化混合反应器为微界面反应器或者超重力反应器中的一种。
[0021]进一步的,优选反应流程,反应原料加入强化混合反应器中进行部分氨肟化反应,随后进入釜式反应器完成反应,釜式反应器反应产物移除反应热后循环进入强化混合反应器,原料酮经静态混合器与反应循环物料混合后经循环管进入强化混合反应器,氨、双氧水经设置在强化混合反应器内部的分布器进入。
[0022]进一步的,所述两段氨肟化反应原料可以加入强化混合反应器,也可以加入釜式反应器,或者是按一定比例分别在两个反应器中加料。
[0023]优选地,反应原料可直接加入强化混合反应器。
[0024]进一步的,强化混合反应器循环量与进料量比值在5
‑
30之间,优选地,该比值在10
‑
25之间。
[0025]进一步的,所述反应产物在旋液分离设备中完成油相与含催化剂水相的分离,油
相进入下一个系统提纯。
[0026]进一本文档来自技高网...
【技术保护点】
【技术特征摘要】
1.一种两段氨肟化反应制备酮肟的方法,在固态催化剂和去离子水存在条件下,酮、氨、双氧水在两段氨肟化反应器中进行三相非均相反应生成酮肟;反应液经有机溶剂萃取后,在专有分离设备中分离催化剂后,大部分水和油分别去后系统处理,含催化剂的浊液返回反应系统循环使用。2.根据权利要求1所述的一种两段氨肟化反应制备酮肟的方法,其特征在于:还包括一种固态催化剂的制备方法:S1:按照质量份数,将50
‑
80份的钛硅分子筛,200
‑
600份去离子水,3
‑
7份r
‑
氨基丙基三乙氧基硅烷,30
‑
50℃超声处理20
‑
30min,过滤,取出烘干,再放入反应器;S2:在反应器中再加入0.1
‑
2.5份的丙烯酸铁、0.1
‑
0.7份丙烯酸铝,0.3
‑
0.8份的丙烯酸镍,2
‑
6份三乙胺,均匀分散在200
‑
300份的N,N
‑
二甲基甲酰胺(DMF)中,50
‑
70℃搅拌30
‑
100min,过滤,用无水乙醇清洗;S3:固体于100
‑
120℃下干燥过夜,在氢气氛围,500
‑
650℃焙烧3
‑
6h,得到M
‑
TS
‑
1;S4:按照质量份数,将50
‑
60份的M
‑
TS
‑
1,200
‑
300份去离子水,0.3
‑
1.5份2...
【专利技术属性】
技术研发人员:周黎旸,夏碧波,郑燕春,余宏滔,毛伟,徐先荣,吴行,付文英,
申请(专利权)人:衢州巨化锦纶有限责任公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。