当前位置: 首页 > 专利查询>北京大学专利>正文

一种基于二维晶体过渡层的氮化铝复合衬底的制备方法技术

技术编号:36945177 阅读:10 留言:0更新日期:2023-03-22 19:06
本发明专利技术公开了一种基于二维晶体过渡层的氮化铝复合衬底的制备方法。本发明专利技术采用图形化掩模板,图形化掩模板具有多个互相平行且均平行于掩膜基体晶向的带状的通孔,通过图形化掩模板依次沉积BON、BN和AlN,化学刻蚀得到复合平片结构后,沉积AlN平层,再高温退火热处理,重结晶形成单晶的具有图形化的h

【技术实现步骤摘要】
一种基于二维晶体过渡层的氮化铝复合衬底的制备方法


[0001]本专利技术涉及氮化铝复合衬底的制备技术,具体涉及一种基于二维晶体过渡层的氮化铝复合衬底的制备方法。

技术介绍

[0002]近年来,深紫外发光二极管(UV

LED)市场份额逐年递增,其在照明、杀菌、医疗、印刷、生化检测、高密度的信息储存和保密通讯等领域具有重大应用价值。但与目前已成熟的可见光发光二极管(LED)/激光器相比,深紫外波段光学器件却无论从发光功率还是寿命上均依然有待提高,其主要是由于深紫外波段器件所对应的AlGaN发光量子阱区域中铝组分含量高于50%,需要高质量的氮化铝复合衬底作为器件基底。更具体而言,氮化铝复合衬底的晶体质量与应力将直接影响上层外延器件的性能,特别是对于不同发光波段的AlGaN材料而言,不同铝组份的AlGaN量子结构最佳外延条件正对应了氮化铝衬底的不同应力与晶体质量,由此可知,调节氮化铝单晶薄膜的应力状态与晶体质量将直接影响了下游工艺路线与器件性能。因此,寻找到一种全新的调控氮化铝单晶薄膜应力状态与晶体质量的方法,将对紫外半导体光电子器件领域具有重大意义。

技术实现思路

[0003]为了克服以上现有技术的不足,本专利技术提出了一种基于二维晶体过渡层的氮化铝复合衬底的制备方法,在外延衬底上形成图形化AlN层,通过二维晶体过渡层隔断外延衬底,并通过高温退火使得图形化AlN层的规则晶格排列扩展至二维晶体过渡层上的AlN平层,解决AlN/衬底界面的大晶格失配和大热膨胀系数失配问题,获得高晶体质量且近无失配应力的AlN复合衬底。
[0004]本专利技术的基于二维晶体过渡层的氮化铝复合衬底的制备方法,包括以下步骤:
[0005]1)提供具有三方或者六方晶体结构对称性的外延衬底,对外延衬底进行双面抛光;
[0006]2)采用双面抛光的Al2O3作为掩膜基体,采用激光切割的方式在掩膜基体上形成多个带状的通孔,顶视图中,每个带状的通孔具有一对平行边,多个带状的通孔的平行边互相平行且均平行于掩膜基体的[11

20]晶向或[10

10]晶向,得到图形化掩模板;
[0007]3)将图形化掩模板置于外延衬底的上方,采用金属有机化合物化学气相沉淀MOCVD或物理气相沉积PVD技术,沉积一层厚度小于掩膜基体的AlN,然后取走图形化掩模板,进行高温退火处理,在外延衬底上获得与图形化掩模板中通孔相同水平形状的图形化AlN层;
[0008]4)将图形化掩模板置于外延衬底上,且图形化AlN层相应的位于图形化掩模板的通孔内,采用等离子体增强化学气相沉积PECVD或磁控溅射,在图形化AlN层上沉积非晶SiO2掩膜,非晶SiO2掩膜和图形化AlN层的厚度之和小于图形化掩模板的厚度,取走图形化掩模板,得到图形化SiO2掩膜层;
[0009]5)在具有图形化SiO2掩膜层和图形化AlN层的外延衬底上依次沉积BON、BN和AlN,从而在外延衬底上且位于图形化AlN层之间以及图形化SiO2掩膜层上依次形成BON薄膜、BN薄膜和AlN薄膜,BON薄膜、BN薄膜和AlN薄膜的厚度之和与图形化AlN层的高度一致;
[0010]6)通过化学刻蚀的方法除去图形化SiO2掩膜层以及图形化SiO2掩膜层上方的BON薄膜、BN薄膜和AlN薄膜,得到复合平片结构;
[0011]7)在复合平片结构的表面采用MOCVD或PVD技术,沉积AlN平层,高温退火热处理,BN薄膜中的BN高温退火处理后重结晶形成单晶的层状结构的h

BN,BON薄膜中的BON高温退火处理后重结晶形成单晶的层状结构的h

BON,h

BN和h

BON具有图形化,h

BN和h

BON构成二维晶体过渡层,二维晶体过渡层隔断下方的AlN薄膜和外延衬底,解决AlN平层与外延衬底间的晶格失配和热膨胀系数失配问题,使得二维晶体过渡层上方的AlN薄膜和AlN平层退火重结晶,获得来自图形化AlN层中的规则晶格排列规则,得到AlN复合衬底。
[0012]其中,在步骤1)中,外延衬底采用具有三方或者六方晶体结构对称性的氮化镓GaN、氮化铝AlN、蓝宝石Al2O3、碳化硅SiC和金刚石,以及表面具有AlN或GaN模板层的Al2O3、SiC和金刚石中的一种;AlN或GaN模板层的厚度为20~500nm,具有单晶结构,具有(0001)或(000

1)的晶面取向,制备氮化镓GaN或氮化铝AlN的温度高于500℃,制备方法为金属有机物化学气相沉积MOCVD、分子束外延MBE、脉冲激光沉积PLD和磁控溅射中的一种。外延衬底的水平形状为规则的形状,如圆形、方形或长方形。
[0013]在步骤2)中,掩膜基体采用具有(0001)或者(000

1)晶面的Al2O3,掩膜基体的厚度超过0.3mm,带状的通孔的宽度即一对互相平行边之间的距离为0.05~1mm,相邻的两个带状的通孔之间的距离为0.1~1mm,通孔的深度和掩膜基体的高度一致。带状的通孔距离掩膜基体的边缘有距离,非互相平行的一对边距离掩膜基体的边缘3~5mm,非互相平行的一对边的形状与掩膜基体的边缘一致,掩膜基体的水平形状与外延衬底的水平形状一致。
[0014]在步骤3)中,沉积温度高于500℃,AlN的厚度为50nm~500nm;高温退火的温度高于1400℃,压力大于等于0.5atm,退火时间长于60min,气氛为氮气、氢气或氮气和氢气的混合气。
[0015]在步骤4)中,沉积温度为20℃~300℃,沉积速率为0.1nm/min~10nm/min,非晶SiO2掩膜的厚度为50nm~200nm。
[0016]在步骤5)中,BON薄膜和BN薄膜的沉积方法为PVD、MBE和磁控溅射中的一种,AlN薄膜的沉积方法为PVD、MOCVD和磁控溅射中的一种,BON、BN和AlN的沉积温度高于500℃,BON薄膜中O组分超过5%,BON薄膜和BN薄膜的厚度之和小于AlN薄膜的1/4。
[0017]在步骤6)中,化学刻蚀的溶液采用盐酸HCl或氢氟酸HF。
[0018]在步骤7)中,AlN平层的沉积温度高于500℃,厚度为100nm~1000nm;退火温度高于1400℃,退火氛围为氮气或者氮气和氢气的混合气,氢气比氮气的摩尔比小于0.05,退火时间超过60min;通过改变图形化掩模板中通孔的形状,改变BN和BON区域的相对面积占比,实现对外延衬底与上层AlN接触区域(存在界面晶格失配和热膨胀系数失配)和非接触区域(不存在界面晶格失配和热膨胀系数失配)的调控,进而实现对外延衬底上AlN中失配应力的调节。
[0019]本专利技术的优点:
[0020]本专利技术中BN、BON和AlN等材料体系的外延工艺兼容,能够采用通用设备制造,工艺
简单,设备需求低;通过高温退火和高温诱导重结晶等方案制备高质量AlN复合衬底,通过本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种基于二维晶体过渡层的氮化铝复合衬底的制备方法,其特征在于,所述制备方法包括以下步骤:1)提供具有三方或者六方晶体结构对称性的外延衬底,对外延衬底进行双面抛光;2)采用双面抛光的Al2O3作为掩膜基体,采用激光切割的方式在掩膜基体上形成多个带状的通孔,顶视图中,每个带状的通孔具有一对平行边,多个带状的通孔的平行边互相平行且均平行于掩膜基体的[11

20]晶向或[10

10]晶向,得到图形化掩模板;3)将图形化掩模板置于外延衬底的上方,采用金属有机化合物化学气相沉淀MOCVD或物理气相沉积PVD技术,沉积一层厚度小于掩膜基体的AlN,然后取走图形化掩模板,进行高温退火处理,在外延衬底上获得与图形化掩模板中通孔相同水平形状的图形化AlN层;4)将图形化掩模板置于外延衬底上,且图形化AlN层相应的位于图形化掩模板的通孔内,采用等离子体增强化学气相沉积PECVD或磁控溅射,在图形化AlN层上沉积非晶SiO2掩膜,非晶SiO2掩膜和图形化AlN层的厚度之和小于图形化掩模板的厚度,取走图形化掩模板,得到图形化SiO2掩膜层;5)在具有图形化SiO2掩膜层和图形化AlN层的外延衬底上依次沉积BON、BN和AlN,从而在外延衬底上且位于图形化AlN层之间以及图形化SiO2掩膜层上依次形成BON薄膜、BN薄膜和AlN薄膜,BON薄膜、BN薄膜和AlN薄膜的厚度之和与图形化AlN层的高度一致;6)通过化学刻蚀的方法除去图形化SiO2掩膜层以及图形化SiO2掩膜层上方的BON薄膜、BN薄膜和AlN薄膜,得到复合平片结构;7)在复合平片结构的表面采用MOCVD或PVD技术,沉积AlN平层,高温退火热处理,BN薄膜中的BN高温退火处理后重结晶形成单晶的层状结构的h

BN,BON薄膜中的BON高温退火处理后重结晶形成单晶的层状结构的h

BON,h

BN和h

BON具有图形化,h

BN和h
...

【专利技术属性】
技术研发人员:王新强刘放陈兆营盛博文郭昱成沈波
申请(专利权)人:北京大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1