【技术实现步骤摘要】
一种融合样本内对照信息的宫颈异常细胞识别方法
[0001]本专利技术涉及宫颈异常细胞识别。
技术介绍
[0002]宫颈癌是严重危害妇女健康的恶性肿瘤,威胁着女性的生命。宫颈癌的潜伏期长、早期无症状难以被发现,宫颈上皮内瘤变3级和宫颈癌的发病平均年龄差异为10年,早期宫颈癌治愈率高达91.5%。因此,早发现早治疗是目前应对癌症唯一有效的手段。目前用于发现癌症的检查方法有肿瘤标记物检测、基因检测、影像学检查(B超、CT等)、内镜检查以及病理学检查等。其中只有病理学检查为目前具有确诊意义的检查手段。病理诊断包括细胞病理诊断和组织病理诊断,通过采集人体脱落细胞或组织制片染色,然后由病理医生在镜下观察寻找异常细胞后做出诊断。细胞病理诊断取材简单,应用广泛,又能做出定性诊断,特别适合早期诊断和筛查,值得大面积推广,现有通过基于图像处理的细胞病理学筛查是癌前筛查的最为广泛的检测方法。
[0003]近年来,随着以深度学习为代表的机器学习理论的发展,卷积神经网络以其强有效的特征提取能力取得了图像识别领域的革命性突破,被广泛应用于宫颈异常细胞识别等医疗影像分析领域。由于不同生理状态、不同年龄段的宫颈病理状态具有天然差异,宫颈细胞的形态、大小并不相同,加上采样、制片、染色等因素影响,宫颈细胞图像往往颜色多样、内容复杂。深度学习方法主要从宫颈细胞层面展开研究,极少考虑到宫颈细胞病理样本间的差异性,对宫颈异常细胞检测的影响。使用来自不同样本的宫颈异常细胞标注数据训练模型,将导致宫颈异常细胞分类标准模糊,精确率低,假阳性率高等问题。针对 ...
【技术保护点】
【技术特征摘要】
1.一种融合样本内对照信息的宫颈异常细胞识别方法,其特征在于,包含如下步骤:S1、准备宫颈异常细胞检测训练数据、宫颈正常中层鳞状上皮细胞检测训练数据和细胞核与细胞质分割训练数据;S2、训练宫颈异常细胞检测模型、宫颈正常中层鳞状上皮细胞检测模型、细胞核和细胞质分割模型;S3、准备融合样本内对照信息的宫颈异常细胞分类训练数据;S4、构建并训练融合样本内对照信息的宫颈异常细胞分类模型;S5、利用已训练检测模型、分割模型和分类模型识别宫颈细胞病理全景图下宫颈异常细胞。2.如权利要求1所述一种融合样本内对照信息的宫颈异常细胞识别方法,其特征在于,步骤S1中准备宫颈异常细胞检测、宫颈正常中层鳞状上皮细胞检测、细胞核和细胞质分割训练数据,具体步骤如下:首先,收集大量的诊断为阳性和阴性的宫颈细胞病理涂片,并使用扫描仪对涂片扫描,获得宫颈细胞病理涂片的全景图。然后,邀请病理医生对阳性样本全景图标注宫颈异常细胞,对阴性样本全景图标注正常中层鳞状上皮细胞;接着,根据病理医生的标注信息,从全景图中随机位置裁剪一定大小的图片,并保证每张图片中标注信息完整,阳性样本全景图中裁剪的图片和对应的标注信息作为宫颈异常细胞检测训练数据,阴性样本全景图中裁剪的图片和对应的标注信息作为宫颈正常中层鳞状上皮细胞检测训练数据;最后,从样本全景图中裁剪出医生标注的宫颈细胞图片,再使用LabelImg软件对所有宫颈细胞图片的细胞核和细胞质轮廓进行人工标注,标注完成后的数据作为细胞核和细胞质分割训练数据。3.如权利要求1所述一种融合样本内对照信息的宫颈异常细胞识别方法,其特征在于,步骤S2中训练宫颈异常细胞检测模型、宫颈正常中层鳞状上皮细胞检测模型、细胞核和细胞质分割模型,具体步骤如下:检测模型结构与YOLO v5模型结构基本一致,主要由骨干网络、特征融合网络和检测网络组成,将骨干网络中的普通卷积层修改为可变形卷积层,可变形卷积层由可变形卷积、批量归一化和激活函数依次连接构成,通过可变形卷积层与跨阶段局部融合网络构成的残差块连接组成骨干网络;特征融合网络利用空间金字塔池化增加感受野,再利用路径聚合网络收集不同阶段的特征图并进行特征融合,最后使用CIoU损失函数进行精细化分类和回归;分别将宫颈异常细胞和正常中层鳞状上皮细胞检测训练数据输入检测网络中训练,得到宫颈异常细胞和正常鳞状上皮细胞检测模型;使用solo v2原始网络结构作为分割模型结构,将细胞核和细胞质分割训练数据输入分割网络中训练,得到细胞核和细胞质分割模型。4.如权利要求1所述一种融合样本内对照信息的宫颈异常细胞识别方法,其特征在于,步骤S3中准备融合样本内对照信息的宫颈异常细胞分类训练数据,具体步骤如下:首先,将阳性样本全景图依次裁剪为一定大小的图片,并利用宫颈正常中层鳞状上皮细胞检测模型预测全景图裁剪出的图片,获得正常中层鳞状上皮细胞图片,同时将阳性样本中医生标注的异常细胞裁剪出来,获得异常细胞图片;然后,将每个样本的正常中层鳞状上皮细胞图片和异常细胞图片送入细胞核与细胞质分割模型,获得每个细胞图片的细胞核与细胞质轮廓信息;接着,通过轮廓信息计算细胞特征指标,包括细胞核面积、细胞核积分
光密度、细胞核圆度和核质比,计算公式如下:式...
【专利技术属性】
技术研发人员:朱素霞,梁義钦,李超炜,康兰兰,丁博,
申请(专利权)人:哈尔滨理工大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。