一种基于遗传算法的汽轮机流量特性及阀门故障检测方法,属于汽轮机故障检测技术领域,具体方案包括如下步骤:步骤一、采集机组正常运行工况下调节阀门相关历史数据;步骤二、根据定义的故障特征参数计算方式,基于采集的历史数据获取阀门流量特性曲线及各阀门开启特性,确定故障特征参数的正常值及其变化范围;步骤三、基于实际采集到的实时数据,对故障特征参数进行计算;步骤四、利用实时数据的故障特征参数与正常工况下的故障特征参数进行对比,判断阀门是否出现故障、出现了哪种故障以及故障出现的位置;本发明专利技术相比于传统方法可以实现实时准确监测,消除了传统方法只能针对阀门进行专门的开启、关闭试验的弊端。关闭试验的弊端。关闭试验的弊端。
【技术实现步骤摘要】
一种基于遗传算法的汽轮机流量特性及阀门故障检测方法
[0001]本专利技术属于汽轮机故障检测
,具体涉及一种基于遗传算法的汽轮机流量特性及阀门故障检测方法。
技术介绍
[0002]汽轮机调节阀门工作于高温高压环境中,调峰调频工况下工况的频繁调整导致调节阀组动作频繁而磨损加剧,将不可避免地导致阀门部件材料磨损、涂层脱落、阀杆填料剥落、阀芯偏移等问题,进而导致阀门出现硬件问题,长此以往容易发展成为故障并最终影响汽轮机组的安全稳定高效运行。因此,对汽轮机调节阀门进行故障检测的方法对于提升火电机组运行可靠性具有重要意义。
[0003]以往的阀门故障早期预警方法均是基于对其进行的专门试验数据进行的。而面向未来深度调峰调频场景,机组需要保证持续运行以避免出现电网负荷波动问题,因此原有的静态实验方法已经不再适用。根据上述分析,现阶段亟需一种能够利用实时数据进行准确的性能评估和性能退化故障早期预警方法。
[0004]对于调节阀组来说,其能够采集的测点信息较为全面,包括阀门前后蒸汽状态、阀门开度指令与反馈等,众多的参数中蕴含着较为丰富的信息。而调峰调频导致的工况频繁变化导致测量的参数中存在一定的干扰。如何从众多含有干扰的参数中提取能够表征阀门工作状态的参数,并且以表征参数为基础进行故障检测和定位是研究中的主要难点。
技术实现思路
[0005]为了解决现有的利用专门试验进行阀门故障检测和定位的方法不能全部适用火电机组频繁调峰调频的运行状态的背景,导致无法实时准确判断阀门故障类型并针对故障进行预警的问题,本专利技术提供一种基于遗传算法的汽轮机流量特性及阀门故障检测方法。
[0006]为了实现上述目的,本专利技术采取以下技术方案:
[0007]一种基于遗传算法的汽轮机流量特性及阀门故障检测方法,包括以下步骤:
[0008]步骤一、采集机组正常运行工况下调节阀门相关历史数据;
[0009]步骤二、根据定义的故障特征参数计算方式,基于采集的历史数据获取阀门流量特性曲线及各阀门开启特性曲线,确定故障特征参数的正常值及其变化范围;所述故障特征参数包括流量特性线性度、流量特性离散度以及阀门开启特性离散度;采用流量特性曲线折线某点与上一提取点的差值作为流量特性线性度指标;采用均方误差对实际数据相比于流量特性曲线的离散度评价流量特性离散度;采用均方误差对实际数据相比于阀门开启特性曲线的离散度评价阀门开启特性离散度;
[0010]步骤三、基于实际采集到的实时数据,对故障特征参数按照步骤二的计算方式进行计算;
[0011]步骤四、利用实时数据的故障特征参数与正常工况下的故障特征参数进行对比,判断阀门是否出现故障、出现了哪种故障以及故障出现的位置;
[0012]其中,步骤二中,基于采集的历史数据,分别绘制综合流量指令与实际通过阀门的流量散点图和综合流量指令与各阀门开度反馈值的散点图;利用遗传算法对综合流量指令与实际通过阀门的流量的关系进行提取,以实际数据与遗传算法提取后的流量特性曲线的误差平方和SSE指标最小为优化目标进行优化,获取阀门流量特性曲线;利用遗传算法对综合流量指令和各阀门开度反馈值的关系进行提取,以实际数据与遗传算法提取后的阀门开启特性曲线的误差平方和SSE指标最小为优化目标进行优化,以获取各阀门开启特性曲线。
[0013]进一步的,步骤一中,采集的相关历史数据包括主蒸汽压力、调节级压力、各阀门开度反馈值和综合流量指令。
[0014]进一步的,步骤一中,采集的历史数据需要满足机组负荷满足全工况覆盖。
[0015]进一步的,步骤四中,判断实时数据的故障特征参数是否发生偏离的方法如下:对于判断线性度是否发生偏离的标准:如果流量特性线性度在0.75
‑
1.25之间,则认为流量特性线性度处于正常状态,如果在小于0.75或者大于1.25范围内则认为出现故障;对于判断离散度是否发生偏离的标准:通过步骤三得到实际数据与拟合曲线的误差的标准差σ,确定阀门故障检测阈值为[
‑
3σ,3σ],进而利用Pauta准则进行阀门故障检测,如果根据实际数据计算得到的故障特征参数与历史数据的计算值偏差超过上述检测阈值,则判断该故障特征参数出现偏离,否则,判断为未出现偏离;当检测流量特性离散度是否发生偏离时,所述拟合曲线为流量特性曲线,当检测阀门开启特性离散度是否发生偏离时,所述拟合曲线为阀门开启特性曲线。
[0016]进一步的,判断故障的标准为:a、如果流量特性线性度正常,且流量特性离散度未发生偏离,阀门处于未发生故障状态;b、如果流量特性线性度不正常,而流量特性离散度未发生偏离,阀门则处于开启规律不合理的故障状态;c、如果流量特性线性度不正常,同时流量特性离散度也发生偏离,结合阀门开启规律判断阀门状态:如果阀门开启特性离散度未出现偏离,则阀门处于阀头脱落或松动状态,而如果阀门开启特性离散度也出现了偏离,则判断为发生了阀门卡涩故障。
[0017]进一步的,步骤一中,满足全工况覆盖即满足机组最小稳定负荷和额定功率之间的数据全部采集的条件。
[0018]与现有技术相比,本专利技术的有益效果是:
[0019]利用现有机组可获得的实时数据,对汽轮机高压调节阀门是否发生故障进行准确判断,同时利用遗传算法对汽轮机阀门相关测点中存在的干扰信息以及传感器测量噪声进行了有效的滤除,进而可以实现更加灵敏和准确的汽轮机调节阀门故障早期预警。相比于传统方法可以实现实时准确监测,消除了传统方法只能针对阀门进行专门的开启、关闭试验的弊端。
附图说明
[0020]图1为一种基于遗传算法的汽轮机流量特性及阀门故障检测方法流程图。
具体实施方式
[0021]下面将结合附图和实施例,对本专利技术中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是专利技术的一部分实施例,而不是全部的实施例,基于本专利技术中的实施例,
本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本专利技术保护的范围。
[0022]相比于原有方法,本专利技术主要区别点在于以往方法主要是基于已有定义的热力参数进行监测,而以往参数定义的限制导致了现阶段方法不完全适用。
[0023]为解决上述问题,本专利技术在汽轮机组现阶段频繁调峰调频、机组处于时刻动态调整且无法任意进行专门的故障检测试验的情况下,利用实时获取的阀门相关数据对汽轮机高压调节进行准确监测和故障检测及定位。下面结合具体实施方式对本专利技术进行说明。
[0024]具体实施方式一:
[0025]本实施方式记载了一种基于遗传算法的汽轮机流量特性及阀门故障检测方法,包括以下步骤:
[0026]步骤一:从汽轮机DCS或者SIS系统中采集机组在高压调节阀门处于正常工况(设备状态处于最优状态)下的数据,采集数据间隔为1s,采集汽轮机组相关数据,具体采集测点如表1所示;采集数据需要满足机组负荷满足全工况(机组可运行的最小负荷至最大负荷)覆盖;
[0027]表1
[0028本文档来自技高网...
【技术保护点】
【技术特征摘要】
1.一种基于遗传算法的汽轮机流量特性及阀门故障检测方法,其特征在于:包括以下步骤:步骤一、采集机组正常运行工况下调节阀门相关历史数据;步骤二、根据定义的故障特征参数计算方式,基于采集的历史数据获取阀门流量特性曲线及各阀门开启特性曲线,确定故障特征参数的正常值及其变化范围;所述故障特征参数包括流量特性线性度、流量特性离散度以及阀门开启特性离散度;采用流量特性曲线折线某点与上一提取点的差值作为流量特性线性度指标;采用均方误差对实际数据相比于流量特性曲线的离散度评价流量特性离散度;采用均方误差对实际数据相比于阀门开启特性曲线的离散度评价阀门开启特性离散度;步骤三、基于实际采集到的实时数据,对故障特征参数按照步骤二的计算方式进行计算;步骤四、利用实时数据的故障特征参数与正常工况下的故障特征参数进行对比,判断阀门是否出现故障、出现了哪种故障以及故障出现的位置;其中,步骤二中,基于采集的历史数据,分别绘制综合流量指令与实际通过阀门的流量散点图和综合流量指令与各阀门开度反馈值的散点图;利用遗传算法对综合流量指令与实际通过阀门的流量的关系进行提取,以实际数据与遗传算法提取后的流量特性曲线的误差平方和SSE指标最小为优化目标进行优化,获取阀门流量特性曲线;利用遗传算法对综合流量指令和各阀门开度反馈值的关系进行提取,以实际数据与遗传算法提取后的阀门开启特性曲线的误差平方和SSE指标最小为优化目标进行优化,以获取各阀门开启特性曲线。2.根据权利要求1所述的一种基于遗传算法的汽轮机流量特性及阀门故障检测方法,其特征在于:步骤一中,采集的相关历史数据包括主蒸汽压力、调节级压力、各阀门开度反馈值和综合流量指令。3.根据权利要求1所述的一种基于遗传算法的汽轮机流量特性及阀门故障检测方法,其特征在于:步骤一中,采集的历史数...
【专利技术属性】
技术研发人员:姚坤,李兴朔,万杰,曹勇,
申请(专利权)人:哈尔滨工业大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。