基于全集带符号残差检验的非视距鉴定方法、装置和介质制造方法及图纸

技术编号:36606847 阅读:22 留言:0更新日期:2023-02-04 18:30
本发明专利技术公开基于全集带符号残差检验的非视距鉴定方法、装置和介质。本发明专利技术包括对定位测量数据进行分组、对分组数据进行中间估计、利用中间估计值计算全集带符号残差向量、基于全集带符号残差向量检测视距(LOS)候选假设、利用R检验从候选假设中确立最佳视距(LOS)基站组合。本发明专利技术提升了非视距鉴定性能和适用范围,统一了候选假设择优和最小数目基站下的鉴定方法,改善了现有算法最小基站数目下δ检验法的鉴定效果,总体上提高了鉴定精度。总体上提高了鉴定精度。总体上提高了鉴定精度。

【技术实现步骤摘要】
基于全集带符号残差检验的非视距鉴定方法、装置和介质


[0001]本专利技术属于无线电定位
,具体地,涉及基于全集带符号残差检验的非视距鉴定方法、装置和介质。

技术介绍

[0002]非视距(Non

Line

Of

Sight,称NLOS)现象常见于无线电定位环境中,信号传播由于障碍物的遮挡,使得实际的传播时延大于真实距离所需时延,从而引发较大的定位误差,对蜂窝系统而言,这种现象尤其高发于城市小区中,NLOS问题已成为限制定位精度进一步提升的瓶颈。
[0003]当测量方差视为已知时,Riba和Urruela基于最大似然思想提出了最佳视距(Line

Of

Sight,称LOS)子集法(即Riba法),针对所有可能的NLOS基站组合,应用为一个假设并计算其最大似然估计,然后在所有的最大似然估计值中选取对应似然概率最大的假设作为最佳LOS子集。由于Riba法需要计算所有可能组合下的最大似然估计,基于测量时间史时,算法能利用现有结论简化计算,但针对单次测量时,求解每一个最大似然估计都需利用非线性最优化技术,因而计算量较大。
[0004]与Riba法中基于假设的结构类似,Chan和Tsui等人提出了利用残差分布检验的NLOS鉴定方法(即Chan法),当所有基站测量值都为LOS时,文中所定义的归一化残差为中心的χ2分布,而如果含有NLOS测量值,则该归一化残差服从非中心的χ2分布。通过设定适当的χ2分布检验阈值,挑选符合要求的候选假设(基站下标集合的某子集,对应为某个假定的LOS基站组合)。当候选假设不止一个时,以检验量超出阈值范围最少数量对应的假设确立最佳LOS基站组合。当基站数目处于系统最小要求值时,文中还提出了δ检验法,用以提高算法的适应性。
[0005]在Chan法基础上,刘霞提出了一种改进的NLOS鉴定方法(即Liu法),仍然基于归一化残差的χ2分布检验,利用重新定义的距离残差,而非Chan法中的位置残差。Liu法不需要对每种假设的子假设作检验,且不用反复计算近似克拉美劳下界(CRLB)等参数,因而大幅降低Chan法的复杂度,并且,距离残差仅依赖中间估计,其精度相较位置残差更优。
[0006]Riba法和Chan法复杂度较高,应用范围都非常有限,Liu法的复杂度有所降低,但因仍基于χ2分布,受限于归一化独立高斯变量的形式,计算上有较多的冗余;另外,不论Chan法和Liu法,其最小数目基站下的检验均为δ检验,而δ检验使得算法性能在最小数目基站情形下降幅很大,因而为改善此时的性能,更加简单高效地统一鉴定方法也需要进一步探索。

技术实现思路

[0007]本专利技术的目的在于提升了非视距鉴定方法的鉴定性能和适用范围,统一候选假设择优和最小数目基站下的鉴定方法,改善最小基站数目下检验法的鉴定效果。
[0008]为实现上述目的,本专利技术提供了一种基于全集带符号残差检验的非视距鉴定方
法,包括:
[0009]步骤S100,对定位测量数据进行分组的步骤;
[0010]该步骤中,从M个定位测量数据中任取其中大于等于D
min
个的定位测量数据作为一个定位测量数据组;所述M个定位测量数据是参与移动站定位且位置已知的基站接收来自移动站的同一信号而获得的数据,D
min
表示计算移动站位置所需定位测量数据的最少个数,
[0011]其中,M≥D
min
,第m个基站的位置坐标记为x
m
=(x
m
,y
m
)
T
,1≤m≤M,第m个基站获得的定位测量数据组记为定位测量数据中含有均值为零的高斯随机噪声,记随机噪声向量n=[n
1 n2…
n
M
]T
,n
m
为第m个基站定位测量数据中的随机噪声,随机噪声向量的协方差矩阵为Q;定位测量数据组中定位测量数据下标的集合记为集合S
k
,共有N个满足该条件的下标集合S
k
,即1≤k≤N,按高维到低维的顺序排列,依次为包含所有定位测量数据下标的集合S1={1,2,...,M},包含M

1个定位测量数据下标的集合S2={1,2,...,M

1},S3={1,2,...,M

2,M},

,依次类推,最后是包含D
min
个定位测量数据下标的集合为S
N
={1,2,...,D
min
};
[0012]步骤S200,按照分组用每个分组对应的定位测量数据进行中间估计的步骤;
[0013]该步骤中,对每个集合S
k
所对应的定位测量数据组,分别进行单次视距估计,得到N个中间估计值其中,1≤k≤N,LOS(*)表示依据定位测量数据组*进行单次视距估计;
[0014]步骤S300,利用得到的中间估计值计算全集带符号残差向量的步骤;
[0015]该步骤中,根据每个集合S
k
对应的中间估计值求其M维全集带符号残差向量该向量由M个定位测量数据的带符号残差构成,即:其中,第m个元素为第m个定位测量数据的带符号残差;
[0016]步骤S400,基于全集带符号残差向量检测视距候选假设的步骤;
[0017]该步骤中,按照从高维到低维的顺序检测当前维度D上是否存在满足视距检验规则的集合S
k
,包括步骤:
[0018]步骤S
D
,对于当前维度D,D
min
<D≤M,基于全集带符号残差向量检测个D维集合S
k
是否为满足视距检验规则的集合,若D维集合S
k
是满足视距检验规则的集合,则将D维集合S
k
标记为视距候选假设,并且在检测完当前维度所有集合后转入步骤S500,若不存在满足视距检验规则的集合,则降低一个维度重复上述检测,若直到D=D
min
+1时仍不存在满足视距检验规则的集合,则进入步骤S
Dmin

[0019]所述视距检验规则为:根据给定的置信水平α以及由置信水平α确定的阈值λ
m
,或者根据给定的阈值λ
m
以及由阈值λ
m
确定的置信水平α,0<α<1,λ
m
>0,记落在阈值区间ρ
m
=[

λ
m

m
]之外的全集带符号残差向量元素个数为l,若满足l≤floor(M
·
(1

α)),则判定集合S
k
满足视距假设,即在置信水平α下集合S
k
对应的所有定位测量数据为视距,所述floor(*)表示对*的向下取本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种基于全集带符号残差检验的非视距鉴定方法,其特征在于包括:步骤S100,对定位测量数据进行分组的步骤;该步骤中,从M个定位测量数据中任取其中大于等于D
min
个的定位测量数据作为一个定位测量数据组;所述M个定位测量数据是参与移动站定位且位置已知的基站接收来自移动站的同一信号而获得的数据,D
min
表示计算移动站位置所需定位测量数据的最少个数,其中,M≥D
min
,第m个基站的位置坐标记为x
m
=(x
m
,y
m
)
T
,1≤m≤M,第m个基站获得的定位测量数据记为定位测量数据中含有均值为零的高斯随机噪声,记随机噪声向量n=[n
1 n2…
n
M
]
T
,n
m
为第m个基站定位测量数据中的随机噪声,随机噪声向量的协方差矩阵为Q;定位测量数据组中定位测量数据下标的集合记为集合S
k
,共有N个满足该条件的下标集合S
k
,即1≤k≤N,按高维到低维的顺序排列,依次为包含所有定位测量数据下标的集合S1={1,2,...,M},包含M

1个定位测量数据下标的集合S2={1,2,...,M

1},S3={1,2,...,M

2,M},

,依此类推,最后是包含D
min
个定位测量数据下标的集合为S
N
={1,2,...,D
min
};步骤S200,按照分组用每个分组对应的定位测量数据进行中间估计的步骤;该步骤中,对每个集合S
k
所对应的定位测量数据组,分别进行单次视距估计,得到N个中间估计值间估计值其中,1≤k≤N,LOS(*)表示依据定位测量数据组*进行单次视距估计;步骤S300,利用得到的中间估计值计算全集带符号残差向量的步骤;该步骤中,根据每个集合S
k
对应的中间估计值求其M维全集带符号残差向量该向量由M个定位测量数据的带符号残差构成,即:其中,第m个元素为第m个定位测量数据的带符号残差;步骤S400,基于全集带符号残差向量检测视距候选假设的步骤;该步骤中,按照从高维到低维的顺序检测当前维度D上是否存在满足视距检验规则的集合S
k
,包括步骤:步骤S
D
,对于当前维度D,D
min
<D≤M,基于全集带符号残差向量检测个D维集合S
k
是否为满足视距检验规则的集合,若D维集合S
k
是满足视距检验规则的集合,则将D维集合S
k
标记为视距候选假设,并且在检测完当前维度所有集合后转入步骤S500,若不存在满足视距检验规则的集合,则降低一个维度重复上述检测,若检测完D=D
min
+1维度仍不存在满足视距检验规则的集合,则进入步骤所述视距检验规则为:根据给定的置信水平α以及由置信水平α确定的阈值λ
m
,或者根据给定的阈值λ
m
以及由阈值λ
m
确定的置信水平α,0<α<1,λ
m
>0,记落在阈值区间ρ
m
=[

λ
m

m
]之外的全集带符号残差向量元素个数为l,若满足l≤floor(M
·
(1

α)),则判定集合S
k
满足视距假设,即在置信水平α下集合S
k
对应的所有定位测量数据为视距,所述floor(*)表示对*的向下取整,所述阈值λ
m
近似满足下式,
其中,f
m
(n
m
)为第m个定位测量数据中单一维度高斯噪声的概率密度函数,q
mm
为随机噪声向量n=[n
1 n2…
n
M
]
T
的协方差矩阵Q中的第m个主对角线元素;步骤当前维度D=D
min
,将个D
min
维集合S
k
全部作为视距候选假设,转入步骤S500;步骤S500,从视距候选假设中确定最佳视距基站组合的步骤;该步骤中,若步骤S400检测出仅有一个视距候选假设,则输出该视距候选假设下标对应的基站为最佳视距基站组合;若存在多个视距候选假设,则针对视距候选假设的集合S
k
,根据其对应的全集带符号残差向量按下式计算对应的残差度量R
k
:然后选取残差度量R
k
最小的视距候选假设,将对应的集合S
k
中对应的基站作为最佳视距基站组合,检验结束。2.如权利要求1所述的基于全集带符号残差检验的非视距鉴定方法,其特征在于,所述定位测量数据是TOA数据或者TDOA数据,并且D
min
=3。3.如权利要求1所述的基于全集带符号残差检验的非视距鉴定方法,其特征在于,步骤S400中,置信水平α取值为0.95以上,3≤M≤20,所述视距检验规则简化为:若l≤0,即所有元素均落在阈值区间ρ
m
=[

λ
m

m
]之内,则判定集合S
k
满足视距假设。4.如权利要求1所述的基于全集带符号残差检验的非视距鉴定方法,其特征在于,随机噪声向量是独立高斯噪声,随机噪声向量的协方差矩阵Q退化为对角矩阵,所有非对角元素均取值为零,即步骤S300中还对全集带符号残差向量进行归一化,归一化后的全集带符号残差向量为全集带符号残差向量归一化后服从标准正态分布,步骤S400采用归一化后的全集带符号残差向量进行计算,通过查表得到不同置信水平α下的阈值λ
m
取值,或者根据不同的阈值区间ρ
m
=[

λ
m

m
]的阈值λ
m
直接查出对应的置信水平α。5.一种基于全集带符号残差检验的非视距鉴定装置,其特征在于包括定位测量数据分组模块、中间估计模块、全集带符号残差向量计算模块、视距候选假设检测模块和最佳视距基站组合确定模块;其中,定位测量数据分组模块,用于从M个定位测量数据中任取其中大于等于D
min
个的定位测量...

【专利技术属性】
技术研发人员:江成能王红江新超房利达王松
申请(专利权)人:广州红达投资有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1