当前位置: 首页 > 专利查询>武汉大学专利>正文

低干燥收缩高抗压强度的碱激发胶凝材料及其制备方法技术

技术编号:35865510 阅读:41 留言:0更新日期:2022-12-07 10:57
本发明专利技术提供一种低干燥收缩高抗压强度的碱激发胶凝材料,按质量份数计,其包括以下组分:粒化高炉矿渣30~40份;硫铝酸盐水泥10~12份;磷渣6~8份;石英砂12~16份;复合碱激发剂14~18份;水12~16份;苯丙乳液1~3份;高吸水性树脂0.2~0.4份;改性纳米氧化铝0.1~0.3份;改性剑麻纤维0.4~0.6份。本发明专利技术还提供了一种低干燥收缩高抗压强度的碱激发胶凝材料的制备方法,本发明专利技术制得的低干燥收缩高抗压强度的碱激发胶凝材料具有抑制干燥收缩效果好、抗压强度高、流动性和防水性能好等优点。此外,本发明专利技术可以充分利用粒化高炉矿渣等工业废弃物,不仅可以解决固体废弃物堆放的问题,变废为宝,而且制备的碱激发胶凝材料在隧道衬砌裂缝修补,结构加固等领域具有广阔的推广及应用前景。前景。前景。

【技术实现步骤摘要】
低干燥收缩高抗压强度的碱激发胶凝材料及其制备方法


[0001]本专利技术属于碱激发胶凝材料的
,具体涉及一种低干燥收缩高抗压强度的碱激发胶凝材料,还涉及一种低干燥收缩高抗压强度的碱激发胶凝材料的制备方法。

技术介绍

[0002]相比于普通硅酸盐水泥,碱激发胶凝材料能够减少CO2排放量55~75%,免除了“两磨一烧”过程。由于碱激发胶凝材料不仅减少了水泥生长过程中的CO2排放量,而且又合理利用了钢铁工业的副产品,是一种环境友好的胶凝材料。然而,碱激发胶凝材料的干燥收缩是一个体积逐渐减小的过程,其干燥收缩明显大于普通硅酸盐水泥,甚至高达一个数量级,上述现象会导致材料产生裂缝,影响其耐久性,因此使其在工程上的应用受到严重的限制。
[0003]国内外研究学者开展了大量关于碱激发胶凝材料干燥收缩性的研究,在抑制干燥收缩方面取得了一定的成效,但存在一个普遍缺陷,即减小碱激发材料干燥收缩的同时,对抗压强度等力学性能造成了一定的影响。
[0004]基于此,提供一种既能显著抑制干燥收缩性,又能显著提高其抗压强度的碱激发胶凝材料,是亟需解决的技术问题。

技术实现思路

[0005]本专利技术的目的之一在于提供一种既能显著抑制干燥收缩性,又能显著提高其抗压强度的碱激发胶凝材料。
[0006]本专利技术的目的之二在于提供一种既能显著抑制干燥收缩性,又能显著提高其抗压强度的碱激发胶凝材料的制备方法。
[0007]本专利技术实现目的之一采用的技术方案是:提供一种低干燥收缩高抗压强度的碱激发胶凝材料,按质量份数计,其包括以下组分:
[0008]粒化高炉矿渣30~40份;硫铝酸盐水泥10~12份;磷渣6~8份;石英砂12~16份;复合碱激发剂14~18份;水12~16份;苯丙乳液1~3份;高吸水性树脂0.2~0.4份;改性纳米氧化铝0.1~0.3份;改性剑麻纤维0.4~0.6份;
[0009]所述改性纳米氧化铝由纳米氧化铝经酸改性制得,所述改性剑麻纤维由剑麻纤维经KH550硅烷偶联剂改性制得。
[0010]在上述原料中,粒化高炉矿渣提供硅铝来源,且实现碱激发材料的常温制备;硫铝酸盐水泥生成的Aft具有膨胀性,从而减少基体开裂收缩;磷渣能够促进水泥的后续水化,弥补碱激发材料体系后续强度不足的问题,提高力学强度;石英砂用于调节基体的级配,实现填充效果;苯丙乳液提高基体的流动度,且具有优良的保水性,能够改善基体的缺陷,提升力学强度。
[0011]为了更好的抑制胶凝材料的干燥收缩性,并显著提高其抗压强度,本专利技术的原料中还包含了高吸水性树脂、改性纳米氧化铝和改性剑麻纤维。其中,高吸水性树脂能够吸收
其自身超过100倍的水量,后续基体在“解聚

缩聚”的反应过程中,再缓慢释放水分,使得基体的相对湿度保持稳定,进而减少干燥收缩。改性纳米氧化铝的成分为Al2O3,作为合成地聚合物的原料之一,利用其纳米填充效应和纳米桥联效应(纳米尺度)来优化碱激发材料孔隙结构,减小基体的总孔隙率和平均孔径、优化孔径分布、降低中孔比例,形成更加致密、均匀的硬化体结构,从而增加基体的力学强度,降低干燥收缩变形值。同时利用纳米成核效应(化学作用)为碱激发材料的“解聚

缩聚”反应提供更多的反应位点,使得基体(由硅氧四面体和铝氧四面体构成三维无定型网状结构)反应更充分,界面过渡区(ITZ)更少,进而提高密实性,减少干燥收缩。更重要的是,酸改性后的纳米氧化铝可以有效避免进行传统纳米材料分散时需额外引入表面活性剂而导致力学强度降低的问题。剑麻纤维的抗拉强度、刚度较高,经KH550硅烷偶联剂改性后剑麻纤维组织被软化,表面光滑,韧性更高,其表面自带有一定的羟基基团,容易使改性的纳米氧化铝通过脱水缩合反应嫁接在其表面,从纳米和微米的尺度的桥联、阻裂效应来减少基体的干燥收缩。此外,剑麻纤维属于农副产品,相对于其他化学合成纤维,具有可循环再生、低成本、节约资源等优势。在三者的协同作用下,胶凝材料的干燥收缩性得到有效的控制,且抗压强度明显提升。
[0012]进一步的,本申请中,上述三种原料的用量分别为:高吸水性树脂0.2~0.4份;改性纳米氧化铝0.1~0.3份;改性剑麻纤维0.4~0.6份。研究发现,当三种原料的用量低于上述范围,达不到显著提升材料综合性能的效果;而当高吸水性树脂加入过量时,产物前期容易开裂;改性纳米氧化铝和改性剑麻纤维过量时,将分别从纳米尺度和微米尺度上造成团聚现象,降低基体力学性能和增大基体收缩。
[0013]在一些较好的实施方式中,所述低干燥收缩高抗压强度的碱激发胶凝材料,按质量份数计,其包括以下组分:粒化高炉矿渣32~35份;硫铝酸盐水泥10~12份;磷渣6~8份;石英砂14~15份;复合碱激发剂15~16份;水14~16份;苯丙乳液2份;高吸水性树脂0.3~0.4份;改性纳米氧化铝0.1~0.3份;改性剑麻纤维0.4~0.5份。上述条件下制得的碱激发胶凝材料的综合性能更优,干燥收缩值仅为250
×
10
‑6~320
×
10
‑6,14d抗压强度为75~88MPa,28d抗压强度可达89~96MPa,吸水率仅为2.4~2.8%。
[0014]进一步的,所述高吸水性树脂的粒径为0.3~0.4mm,其吸水率为250~600(g/g)。
[0015]进一步的,所述改性纳米氧化铝的粒径为100~200nm。
[0016]在一些较好的实施方式中,改性纳米氧化铝通过以下制作过程制备得到:将纳米氧化铝置于浓硫酸和浓硝酸的混合溶液中,所述纳米氧化铝与混合溶液的质量比为1/100~1/200,所述浓硝酸和浓硫酸的体积比为1/2~1/3;然后充分搅拌,在85~95℃下超声振荡3~4h,接着用去离子水进行稀释,离心分离,得到的沉淀再采用此方法直至所得溶液的PH值大于7,最后将所得的溶液在80~90℃,80~90Pa的真空环境中干燥,得到改性的纳米氧化铝。
[0017]进一步的,所述改性剑麻纤维的长度为1~2mm。
[0018]在一些较好的实施方式中,所述改性剑麻纤维的改性过程如下:将剑麻纤维置于质量溶度为13%~15%KH550硅烷偶联剂的无水乙醇中,然后用超声波震荡6~10min,接着冲洗烘干,即得到改性剑麻纤维。
[0019]优选地,所述粒化高炉矿渣的平均粒径为300~400nm;所述硫铝酸盐水泥为自应力硫铝酸盐水泥,其强度等级为42.5级。
[0020]优选地,所述磷渣的平均粒径为30

45um,其氮吸附测定的比表面积为220

260m2/kg,质量系数K为1.4

1.6;
[0021]优选地,所述石英砂的目数为80~120目。在本专利技术中,不同粒度的原料起到了调控基体粒径分配的效果,使得胶凝材料基体具有更好的力学强度。
[0022]优选地,所述复合碱激发剂为速溶型固体粉料硅酸钠与颗粒状氢氧化钠按照2:1的质量比得到的混合本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种低干燥收缩高抗压强度的碱激发胶凝材料,其特征在于,按质量份数计,包括以下组分:粒化高炉矿渣30~40份;硫铝酸盐水泥10~12份;磷渣6~8份;石英砂12~16份;复合碱激发剂14~18份;水12~16份;苯丙乳液1~3份;高吸水性树脂0.2~0.4份;改性纳米氧化铝0.1~0.3份;改性剑麻纤维0.4~0.6份;所述改性纳米氧化铝由纳米氧化铝经酸改性制得,所述改性剑麻纤维由剑麻纤维经KH550硅烷偶联剂改性制得。2.根据权利要求1所述的低干燥收缩高抗压强度的碱激发胶凝材料,其特征在于,所述高吸水性树脂的粒径为0.3~0.4mm,其吸水率为250~600g/g。3.根据权利要求1所述的低干燥收缩高抗压强度的碱激发胶凝材料,其特征在于,所述改性纳米氧化铝的粒径为100~200nm。4.根据权利要求1所述的低干燥收缩高抗压强度的碱激发胶凝材料,其特征在于,所述改性剑麻纤维的长度为1~2mm。5.根据权利要求1所述的低干燥收缩高抗压强度的碱激发胶凝材料,其特征在于,所述粒化高炉矿渣的平均粒径为300~400nm;所述硫铝酸盐水泥为自应力硫铝酸盐水泥,其强度等级为42.5级。6.根据权利要求1所述的低干燥收缩高抗压强度的碱激发胶凝材料,其特征在于,所述磷渣的平均粒径为30~45um,其氮吸附测定的比表面积为220~260m2/kg,质量系数K为1.4~1.6。7.根据权利要求1所述的低干燥...

【专利技术属性】
技术研发人员:李杉李发平卢亦焱刘真真郝华丽颜宇鸿
申请(专利权)人:武汉大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1