【技术实现步骤摘要】
一种基于深度神经网络的融合表型和分子信息的中药处方人工智能评价方法
[0001]本专利技术涉及一种基于深度神经网络的融合表型和分子信息的中药处方人工智能评价方法。
技术介绍
[0002]中药在临床上使用广泛,然而其不合理使用情况也比较严重。一项针对北京市第一中西医结合医院2013年门诊不规范中药饮片处方的分析[1]表明,2400张处方中不规范处方177张,占所抽处方的7.38%。另外一项针对北京积水潭医院2011年1月-2013年5月药师在调配前不合理处方的研究表明[2],663张不合理处方中共有709处不合理因素,其中以下3种情况居多:毒性饮片超量(73.76%),处方开具配伍禁忌未签字(12.13%),处方饮片输机错误(7.76%)。这些统计结果表明中药处方的不合理使用,除了常见的人工操作错误之外,主要是违法配伍禁忌、没有进行辨证论治、没有考虑不良反应等情况,而这些恰恰是比较严重的不合理使用情况。因此,准确地推荐中药处方、降低中药处方的不合理使用率是一个亟待解决的问题。
[0003]随着人工智能、大数据时代的到来,越来越多的研究关注于使用人工智能的方法挖掘名医经验,从而实现中药处方的人工智能评价。实际上,人工智能技术已经在中医药领域具有了一定的应用,例如基于人工智能的中医“四诊”信息标准化采集、处理与分析,中医体质辨析,中医名医经验的挖掘等等。这些应用在一定程度上促进了中医的客观化和标准化。因此,人工智能技术应用于中药处方的人工智能评价即是中药临床精准使用所需,也是人工智能、大数据时代下多学科交叉发展所孕 ...
【技术保护点】
【技术特征摘要】
1.一种基于深度神经网络的融合表型与分子信息的中药处方人工智能评价方法,其特征在于包括如下步骤:1)提取诊断描述的特征,其中:诊断描述包括主诉、现病史、舌象和脉象,诊断描述的特征提取采取是基于TextCNN,包括使用长度不同的卷积核在文本上进行一维卷积,然后将不同长度的卷积核提取到的特征拼接在一起,作为一段文本的特征输入到网络中进行训练,2)提取中药处方信息的深度特征,包括:从公开的数据库搜集中药、化合物、靶点信息,构建中药
‑
化合物
‑
靶点异构网络;使用低维嵌入表示方法对异构网络进行低维嵌入表示,提取中药、化合物、靶点的特征;在通过低维嵌入表示的方式度量了中药的特征之后,进一步度量中药处方的特征,其中,中药处方的特征被定义为该处方所含中药各个维度上值的均值,即:假设中药处方中含有m个中药,每个中药特征的维度为d,则中药处方的特征表示为:3)划分训练集和测试集,其中:训练集和测试集的划分遵循疾病内部相似性原则从而既保证诊断描述的相似性也保证中药处方的相似性,包括:首先使用Doc2Vec训练所有的诊断描述,从而能够度量任何两个诊断描述之间的相似性;然后,使用Jaccard度量任意两个中药处方之间的相似性;最后,设定每种疾病训练集占比0.9,测试集占比0.1,针对每一条测试集数据,保证在当前疾病的训练集中至少有一条数目满足诊断描述相似性大于等于0.7并且中药处方相似性大于等于0.7,4)对训练集的中药处方进行分层采样,其中:每一个样本包含三方面信息:诊断描述,疾病和中药处方,包括:将当前中药处方和当前疾病的其他中药处方计算Jaccard相似性;然后根据Jaccard的值进行分层采样,其中Jaccard的值分布在0
‑
1之间;将该0
‑
1切分为20等长小区间,在每个小区间上进行采样并且采样量和当前疾病的样本量占总样本量的比例成正比,即:其中具体的采样规则为:K=50,且设这个小区间上的中药处方量为X,如果X≥S,则不放回随机抽样S个中药处方;如果0<X<S,则X全部被采样,并且通过倒序依次删减当前中药处方尾部的中药产生新的S
‑
X个中药处方,如果X=0,则通过倒序依次删减当前中药处方尾部的中药产生新的S个中药处方;从而通过该策略即实现了大幅度扩充训练样本也能够捕捉同一诊断描述的“次优”中药处方信息,5)构建神经网络模型并进行训练,其中:神经网络模型分为3部分:基于卷积神经网络的诊断描述信息的深度特征提取,其中:诊断描述先经过一个嵌入层,嵌入层的维度为100,然后分别经过三个单元数为16的一维卷积层,卷积核的长度分别
为6,7,8,步长为10,每个卷积层后面连接一个一维MaxPooling层,三个MaxPooling提取的特征拼接在一起作为诊断描述的特征,基于网络嵌入表示的中药处方信息的深度特征提取,其中:中药处方的特征经过网络嵌入方法提取特征后,长度归一化到256,依次经过两个长度分别为128,64的全连接层,激活函数都为Relu,基于卷积神经网络的中药处方人工智能评价,其中:诊断描述的特征和中药处方的特征拼接在一起之后,依次经过两个单元数为32一维卷积层和MaxPooling层,最后输出到两个单元数分别为32和16的全连接层,激活函数都为Relu,输出层单元数为1,6)确定神经网络模型评价指标并进行评价,其中:评价指标包括命中率HR和接收者操作特征曲线ROC的曲线下方的面积大小AUC,包括:按如下公式确定命中率HR:其中,分母GT是所有的测试集合,分子NumberOfHits表示命中的样本个数,接收者操作特征曲线ROC曲线的横轴为假正例率FPR,纵轴为真正例率TPR,其表达公式分别为:分别为:其中,FP为假阳性率,TP为真阳性率,TN为真阴性率,评价的方式为命中率HR和/或AUC越高则模型越好,评价过程包括:按照上述的命中率HR公式直接计算命中率HR,AUC的计算过程包括:把每个诊断描述和当前诊断描述对应的疾病的所有中药处方进行预测,从而每个诊断描述都有一个已知标签向量,一个预测的分数向量,以及当前中药处方和当前诊断描述对应的疾病的所有中药处方的Jaccard相似性向量,按预测的分数对样本进行降序排序,对于不设定Jaccard阈值的情况,直接依据已知标签向量和预测的分数向量计算TPR和FPR,对于设定Jaccard阈值的情况,将Jaccard相似性向量从上到下按照Jaccard阈值进行划分,把Jaccard相似性大于Jaccard阈值的样本归为预测正确的样本,把Jaccard相似性小于阈值的样本归为预测错误的样本,分别计算出此时的TPR和FPR,从而确定AUC。2.根据权利要求1所述的基于深度神经网络的融合表型与分子信息的中药处方人工智能评价方法,其特征在于:在所述基于卷积神经网络的中药处方人工智能评价的操作中,每个诊断描述都由若干个字符组成,经过Embedding层之后,每个字符的维度为D=100,假设诊断描述包含的字符数为N,则每个诊断描述用一个随机初始化的D维向量表示:S
i:j
代表诊断描述中的第i个到第j个字符,即:
...
【专利技术属性】
技术研发人员:李梢,李艳,周武爱,杨扩,王鑫,吴敏,
申请(专利权)人:皖南医学院弋矶山医院,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。