一种基于亚微米3D灰度光刻技术的结构色成像薄膜制造技术

技术编号:35490226 阅读:20 留言:0更新日期:2022-11-05 16:45
本实用新型专利技术提供了一种基于亚微米3D灰度光刻技术的结构色成像薄膜,包括:基材层、位于所述基材层一面上的微透镜阵列以及所述微透镜阵列表面的反射层,所述微透镜阵列为周期性排列的多个微凸透镜,每个微凸透镜的结构参数根据需要产生的结构色而确定。所述每个微凸透镜的结构参数包括口径、深度和曲率。所述每个微凸透镜的口径范围为5~20um,深度范围为1

【技术实现步骤摘要】
一种基于亚微米3D灰度光刻技术的结构色成像薄膜


[0001]本技术涉及表面结构成像
,特别涉及一种基于亚微米3D灰度光刻技术的结构色成像薄膜。

技术介绍

[0002]目前,彩色图像制品主要是基于染料或颜料的化学颜色制备而成的,这造成了严重的环境污染问题,对人体健康不利。而由光与特定微结构或纳米结构相互作用能产生结构色,基于结构色成像的产品具有抗褪色、色彩明亮和成像优异的性能。然而,目前基于结构色成像的产品存在生产效率低、成本高昂的问题。

技术实现思路

[0003]本技术为了解决现有技术中的缺陷,提出了一种基于亚微米3D灰度光刻技术的结构色成像薄膜。
[0004]本技术的一种基于亚微米3D灰度光刻技术的结构色成像薄膜,包括:基材层、位于所述基材层一面上的微透镜阵列以及所述微透镜阵列表面的反射层,所述微透镜阵列为周期性排列的多个微凸透镜,每个微凸透镜的结构参数根据需要产生的结构色而确定。
[0005]优选地,所述每个微凸透镜的结构参数包括口径、深度和曲率。
[0006]优选地,所述每个微凸透镜的口径范围为5~20um,深度范围为1

10um。
[0007]优选地,所述基材层由UV胶固化而成,厚度为10~50um。
[0008]优选地,所述反射层为金属反射层。
[0009]优选地,所述金属反射层为铝反射层。
[0010]优选地,所述金属反射层的厚度为100~200nm。
[0011]优选地,所述结构色成像薄膜通过亚微米3D灰度光刻技术制备而成。
[0012]本技术具有如下有益效果:
[0013]本技术的基于亚微米3D灰度光刻技术的结构色成像薄膜,具有优异的光学成像性能,不会对环境产生污染,并且制备成本低廉,生产效率高。
附图说明
[0014]图1是本技术的基于亚微米3D灰度光刻技术的结构色成像薄膜的侧视示意图。
[0015]图2是本技术的基于亚微米3D灰度光刻技术的结构色成像薄膜的俯视示意图。
具体实施方式
[0016]以下将结合说明书附图对本技术的实施方式予以说明。需要说明的是,本说明书中所涉及的实施方式不是穷尽的,不代表本技术的唯一实施方式。以下相应的实
施例只是为了清楚的说明本技术专利的
技术实现思路
,并非对其实施方式的限定。对于该领域的普通技术人员来说,在该实施例说明的基础上还可以做出不同形式的变化和改动,凡是属于本技术的技术构思和
技术实现思路
并且显而易见的变化或变动也在本技术的保护范围之内。
[0017]如图1~2所示,本技术的优选实施例的一种基于亚微米3D灰度光刻技术的结构色成像薄膜,包括:基材层1、位于所述基材层1一面上的微透镜阵列2以及所述微透镜阵列表面的反射层3。所述微透镜阵列2为周期性排列的多个微凸透镜21。每个微凸透镜21的结构参数根据需要产生的结构色而确定。该结构参数可以通过编程算法得到。优选地,所述每个微凸透镜的结构参数包括口径、深度和曲率。这里,口径是指凸透镜的垂直主光轴的最大截面的直径,深度是指微凸透镜21的最高点至基材层1的距离。优选地,每个微凸透镜21的口径为5~20um,深度为1

10um。每个微凸透镜的结构参数与其所能反射的颜色(结构色)有着对应关系。
[0018]在优选的实施例中,所述基材层1由UV胶固化而成,厚度为10~50um。
[0019]在优选的实施例中,所述反射层3为金属反射层。优选地,所述金属反射层3为铝反射层。所述金属反射层3的厚度为100~200nm。这样可以保证反射率接近100%。当然在一些实施例中,也可以使用其它金属反射层,但是优选地应使光的反射率接近100%。
[0020]在本技术的每个优选实施例中,所述结构色成像薄膜通过亚微米3D灰度光刻技术制备而成。
[0021]本技术的优选实施例的微凸透镜阵列以及其表面的金属反射层在光通过整个结构时,由于折射率的对比度跃迁可以产生总内部反射,这改变了光的相位,增强了其反射率,从而产生了结构色。同时,不同结构参数的微凸透镜阵列及其表面的金属反射层会产生不同的颜色,因此,在基材表面通过亚微米3D灰度光刻技术制备不同结构参数的微凸透镜阵列及其表面的金属反射层,就可以产生不同的颜色,从而呈现具有不同色彩的图像。
[0022]下面对本技术的结构色成像薄膜的制备过程进行详细说明。制备过程包括以下步骤:
[0023]步骤1:通过编程算法得到所需结构色成像薄膜(表面)各个微凸透镜的具体结构参数,所述结构参数包括口径、深度和曲率;通过计算得到不同颜色相对应的微凸透镜的具体结构参数,对结构色成像薄膜表面不同位置赋予不同结构参数的微凸透镜,就可以得到能呈现不同颜色的结构色成像薄膜表面。
[0024]步骤2:基于亚微米3D灰度光刻技术在光刻胶上制备出结构色成像薄膜的表面母版。该步骤是通过匀胶、亚微米级激光直写3D光刻、显影等工艺,将上一步得到的各个位置的微凸透镜具体结构参数制备到光刻胶上,从而得到结构色成像薄膜的表面母版。
[0025]步骤3:利用UV转运工艺得到未镀金属反射层的结构色成像薄膜,该结构色成像薄膜包括基材层及其上的微凸透镜阵列。该步骤是通过在光刻胶结构色成像表面母版旋涂UV胶后,用紫外线固化,去胶水浸泡,得到未镀金属反射层的结构色成像薄膜。
[0026]步骤4:通过在原子层沉积镀反射层得到结构色成像薄膜。该步骤是通过将未镀金属反射层的结构色成像薄膜放置在原子层沉积腔内,第一前体气体流过原子层沉积腔内的基材上形成第一单层。在形成第一单层后,反应性中间体气体流向沉积腔内的结构色成像表面。反应性中间体气体在反应性中间体气体的流动的条件下能够与来自第一前体流的中
间反应副产物反应。在反应性中间体流过后,第二前体气体流向沉积腔内的结构色成像表面,以在第一单层上有效形成第二单层,从而就可以得到制备完全的结构色成像薄膜。
[0027]本技术的基于亚微米3D灰度光刻技术的结构色成像薄膜,具有优异的光学成像性能,不会对环境产生污染,并且制备成本低廉,生产效率高。
[0028]显然,本
中的普通技术人员应当认识到,以上的实施例仅是用来说明本技术,而并非用作为对本技术的限定,只要在本技术的实质精神范围内,对以上所述实施例的变化、变型都将落在本技术的权利要求书范围。
本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种基于亚微米3D灰度光刻技术的结构色成像薄膜,其特征在于,包括:基材层、位于所述基材层一面上的微透镜阵列以及所述微透镜阵列表面的反射层,所述微透镜阵列为周期性排列的多个微凸透镜,每个微凸透镜的结构参数根据需要产生的结构色而确定。2.根据权利要求1所述的基于亚微米3D灰度光刻技术的结构色成像薄膜,其特征在于,所述每个微凸透镜的结构参数包括口径、深度和曲率。3.根据权利要求2所述的基于亚微米3D灰度光刻技术的结构色成像薄膜,其特征在于,所述每个微凸透镜的口径范围为5~20um,深度范围为1

10um。4.根据权利要求1所述的基于亚微米3...

【专利技术属性】
技术研发人员:曹皓万辉桂成群
申请(专利权)人:矽万上海半导体科技有限公司
类型:新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1