一种面向麻醉智能决策的多方协同原型系统及其方法技术方案

技术编号:35146599 阅读:27 留言:0更新日期:2022-10-05 10:24
本发明专利技术公开了一种面向麻醉智能决策的多方协同原型系统及其方法,包括:数据采集模块,用于采集病患麻醉手术的多模态数据,多模态数据具体为:基本信息、手术特征信息、生命体征数据、环境传感数据以及实时状态数据,并对手术全流程的多模态数据处理、存储;模型训练模块,各参与方利用本地相关数据和初始模型进行麻醉数据挖掘模型的联合训练。本发明专利技术提供了面向麻醉智能决策的多方协同原型系统及其方法,通过多方参与者各自采集针对麻醉手术各个环节的多模态数据,使用本地数据进行麻醉相关统计分析及挖掘模型的联合训练;然后各方协同参与麻醉临床专家决策知识的收集,结合本地数据库,构建麻醉手术全流程联合知识库。构建麻醉手术全流程联合知识库。构建麻醉手术全流程联合知识库。

【技术实现步骤摘要】
一种面向麻醉智能决策的多方协同原型系统及其方法


[0001]本专利技术属于医疗技术与计算机应用
,具体涉及一种面向麻醉智能决策的多方协同原型系统及其方法。

技术介绍

[0002]麻醉技术是作为减轻病人痛苦、方便手术进程的重要手段,数据挖掘是从大数据集中自动或方便地发现知识的模式。传统麻醉技术对于医生经验和技术具有很高要求,利用数据挖掘、人工智能等技术手段可以实现麻醉技术的精准实施和辅助决策。但随着人工智能与大数据技术的发展,为追求机器学习模型更高的准确率,训练模型所需的数据量与模型运算量不断增加。在此情况下,出现了由多台服务器或终端进行联合训练的方法。
[0003]此外,以输入的多数据融合为手段结合临床观察指标,通过提取麻醉相关信息、电子病历系统、手术患者数据信息,进行结构化的存储,提取训练集和验证集建立麻醉手术各应用场景下的预测模型,构建麻醉智能决策系统,以达到精准实施的目的。这项技术是对以往基于人工经验的麻醉技术的改进,既节约了人力、提高了麻醉效率,还避免了资源浪费、缩短了手术时间,能够为手术麻醉的临床应用提供良好的指导价值。
[0004]总的来说,传统的麻醉技术需要医生具有大量技术经验以及实操经验,依赖于人力,智能化较低,不仅耗费人力而且麻醉效率较低,不利于麻醉工作的进展。

技术实现思路

[0005]本专利技术的目的在于提供一种面向麻醉智能决策的多方协同原型系统及其方法,以解决的传统麻醉技术需要大量技术经验以及实操经验,依赖于人力,智能化较低,不仅耗费人力而且麻醉效率较低,不利于麻醉工作进展的问题。
[0006]为实现上述目的,本专利技术提供如下技术方案:一种面向麻醉智能决策的多方协同原型系统及其方法,包括:
[0007]数据采集模块,用于采集病患麻醉手术的多模态数据,多模态数据具体为:基本信息、手术特征信息、生命体征数据、环境传感数据以及实时状态数据,并对手术全流程的多模态数据处理、存储;
[0008]模型训练模块,各参与方利用本地相关数据和初始模型进行麻醉数据挖掘模型的联合训练;
[0009]专家系统,用于各方协同参与麻醉临床专家决策知识的收集,结合本地数据库,建立麻醉全流程管理联合知识库,并进一步基于联合知识库建立麻醉决策专家系统;
[0010]增量学习模块,用于专家系统参与联合模型的验证和评价过程,并基于人机协同对联合模型进行增量学习、以融合规则式经验与机器学习方法各自的优点。
[0011]优选的,所述模型训练模块的运行包括如下步骤:
[0012]S1:组织方组织所述麻醉数据挖掘模型创建初始模型并下发给各参与方,接着,参与方获取初始模型梯度向量,利用本地采集的数据用于本轮次目标模型的训练,获得相应
的局部梯度向量;
[0013]S2:每个参与方对本轮次训练得到的模型进行测试、确定满足要求的本地模型,并提取步骤S1中所获取的局部梯度向量并发送给组织方;
[0014]S3:组织方接收所述所有参与方的局部梯度向量,根据目标模型进行聚合得到当前轮次的聚合模型,提取聚合目标梯度向量,并再次发送给每个参与方;
[0015]S4:每个参与方接收从组织方获取的所述聚合目标梯度向量,根据该目标梯度向量更新当前所述本地模型参数,用于下一轮次迭代训练;
[0016]S5:当满足多轮迭代次数要求后,组织方将聚合得到的最新模型参数作为多方协同模型训练的第一阶段模型。
[0017]优选的,所述麻醉数据挖掘模型的内容包括:麻醉深度评估模型、不良事件预测模型、临床决策支持模型、围术期超声图像识别模型以及麻醉药物靶控注入模型。
[0018]优选的,所述聚合模型包括多个形式的同步梯度更新和模型参数平均;
[0019]所述同步梯度更新,用于每次训练迭代中,每个参与者从组织者获取全局模型,根据自己的一批训练数据在本地计算梯度更新,并将更新发送到组织者,组织者等待所有参与者的梯度更新,然后使用随机梯度下降将聚合更新应用于全局模型;
[0020]所述模型参数平均,用于在每一轮迭代中,第k个参与者在当前模型上使用的大小为nk的整个训练数据集在本地执行若干次随机梯度下降步骤,即全局可见更新不是基于批次,而是基于参与者的整个数据集,每个参与者将生成的模型提交给组织者,组织者计算模型参数加权平均值用于全局模型。
[0021]优选的,所述专家系统中,专家决策收集所的内容包括:各参与方采集录入麻醉医生在病程中各事件、行为数据,临床决策数据,建立医学知识库、既往病历库、病症信息对应诊断、临床专家诊疗,并根据所收集的内容建立知识库。
[0022]优选的,所述专家系统的运行为:在知识库与多模态数据的基础上,采用案例推理结合证据推理,实现麻醉辅助决策功能。
[0023]优选的,所述专家系统的评估内容具体包括:麻醉深度的评估、不良事件的预测、临床决策的支持、围术期超声图像的识别、麻醉药物给药的剂量。
[0024]优选的,所述模型增量学习模块运行的具体过程为:
[0025]接受新的数据或接受新任务;
[0026]接受的新的数据以流式送达,接受的新任务时通过联合模型在保留旧的知识和预测结果、并适应新的任务;
[0027]所述增量学习模块的算法具体为:
[0028]其中,(x
t
,y
t
)

代表t时刻新的数据,即:新的类别或者完全不同的新任务;
[0029]f
t
‑1代表t

1时刻的预测模型,M
t
‑1代表t

1时刻的记忆;
[0030]在经过新的学习后,模型迭代得到f
t
和新的记忆M
t

[0031]优选的,所述方法具体包括如下步骤:
[0032]步骤1:多个参与方实时采集、记录、存储病患基本信息,手术特征信息,麻醉实施前、实施中及实施后的环境传感数据,病患生命体征数据以及各类监护数据,进行适当的数据筛选等操作后存储在参与方本地环境;
[0033]步骤2:通过组织方提供的模型训练目标,对初始模型梯度向量进行提取,并在本
地数据内提供相应的局部梯度向量;
[0034]步骤3:组织方接收参与方的反馈,根据目标模型训练需求,采用聚合方法,将参与方提交的训练模型参数聚合得到全局模型,再分别发送给参与方;
[0035]步骤4:系统对聚合后的模型进行测试,得到评价模型的效果,具体效果可分为以下情况容:
[0036]1〉模型不满足目标需求,则进行下一轮模型训练迭代;
[0037]2〉模型满足目标需求,进入下一步骤;
[0038]步骤5:通过专家系统对上一步骤中聚合的挖掘模型预测的结果进行判定,根据判定的结果对模型给出相应的评价、并记录模型预测不满足目标需求的数据;
[0039]步骤6:使用人机协同机制,对所述聚合的挖掘模型预测错误的结果进行人本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种面向麻醉智能决策的多方协同原型系统,其特征在于,包括:数据采集模块,用于采集病患麻醉手术的多模态数据,多模态数据具体为:基本信息、手术特征信息、生命体征数据、环境传感数据以及实时状态数据,并对手术全流程的多模态数据处理、存储;模型训练模块,各参与方利用本地相关数据和初始模型进行麻醉数据挖掘模型的联合训练;专家系统,用于各方协同参与麻醉临床专家决策知识的收集,结合本地数据库,建立麻醉全流程管理联合知识库,并进一步基于联合知识库建立麻醉决策专家系统;增量学习模块,用于专家系统参与联合模型的验证和评价过程,并基于人机协同对联合模型进行增量学习、以融合规则式经验与机器学习方法各自的优点。2.根据权利要求1所述的一种面向麻醉智能决策的多方协同原型系统,其特征在于,所述模型训练模块的运行包括如下步骤:S1:组织方组织所述麻醉数据挖掘模型创建初始模型并下发给各参与方,接着,参与方获取初始模型梯度向量,利用本地采集的数据用于本轮次目标模型的训练,获得相应的局部梯度向量;S2:每个参与方对本轮次训练得到的模型进行测试、确定满足要求的本地模型,并提取步骤S1中所获取的局部梯度向量并发送给组织方;S3:组织方接收所述所有参与方的局部梯度向量,根据目标模型进行聚合得到当前轮次的聚合模型,提取聚合目标梯度向量,并再次发送给每个参与方;S4:每个参与方接收从组织方获取的所述聚合目标梯度向量,根据该目标梯度向量更新当前所述本地模型参数,用于下一轮次迭代训练;S5:当满足多轮迭代次数要求后,组织方将聚合得到的最新模型参数作为多方协同模型训练的第一阶段模型。3.根据权利要求1所述的一种面向麻醉智能决策的多方协同原型系统,其特征在于,所述麻醉数据挖掘模型包括:麻醉深度评估模型、不良事件预测模型、临床决策支持模型、围术期超声图像识别模型以及麻醉药物靶控注入模型。4.根据权利要求2所述的一种面向麻醉智能决策的多方协同原型系统,其特征在于,所述聚合模型包括多个形式的同步梯度更新和模型参数平均;所述同步梯度更新,用于每次训练迭代中,每个参与者从组织者获取全局模型,根据各自的一批训练数据在本地计算梯度更新,并将更新发送到组织者,组织者等待所有参与者的梯度更新,然后使用随机梯度下降将聚合更新应用于全局模型;所述模型参数平均,用于在每一轮迭代中,第k个参与者在当前模型上使用的大小为nk的整个训练数据集在本地执行若干次随机梯度下降步骤,即全局可见更新不是基于批次,而是基于参与者的整个数据集,每个参与者将生成的模型提交给组织者,组织者计算模型参数加权平均值用于全局模型。5.根据权利要求1所述的一种面向麻醉智能决策的多方协同原型系统,其特征在于,所述专家系统中,专家决策收集所的内容包括:各参与方采集录入麻醉医生在病程中各事件、行为数据,临床决策数据,建立医学知识库、既往病历库、病症信息对应诊断、临床专家诊疗,并根据所收集的内容建立知识库。
6.根据权利要求5所述的一种面向麻醉智能决策的多...

【专利技术属性】
技术研发人员:曹君利
申请(专利权)人:徐州医科大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1