本发明专利技术公开了一种基于滚齿加工的靠模伺服齿向修形机构及其数学模型,其中靠模伺服齿向修形机构包括靠模、齿条杆、导杆、输入齿轮、中间齿轮、输出齿轮和输出轴,靠模固定连接刀架,输出轴连接工作台手摇蜗杆,导杆的一端设置与靠模接触的滚轮,导杆的另一端固定连接齿条杆,齿条杆与输入齿轮啮合,输入齿轮与中间齿轮同轴固定连接,中间齿轮用于与输出齿轮啮合,输出齿轮活动连接输出轴,本发明专利技术在现有滚齿机的基础上增加齿向修形功能,解决了齿轮齿面磨削后齿面有效硬化层深度均匀性、磨削伤痕和磨削凸台所生产的应力集中源问题,并通过对应的数学模型,解决本齿向修形机构与不同滚齿机结合的参数适用问题和加工问题。机结合的参数适用问题和加工问题。机结合的参数适用问题和加工问题。
【技术实现步骤摘要】
基于滚齿加工的靠模伺服齿向修形机构及其数学模型
[0001]本专利技术涉及齿轮加工
,尤其涉及一种基于滚齿加工的靠模伺服齿向修形机构及及其齿向修形的数学模型。
技术介绍
[0002]高速、重载悬臂主动齿轮,工作时正、反转会产生扰度,如果采用理论齿向,反而会生产集中偏载,出现啮合不良,会降低齿轮的寿命,因此,对这类齿轮设计时会对齿向有修形要求。齿轮的齿向修形一般在普通滚齿机进行滚齿完成后的磨齿工序中进行。
[0003]如果光从磨齿工艺上解决齿轮齿向修形会生产有效硬化层深度不均匀问题,同时会产生齿轮齿根的磨削伤痕以及磨削凸台所生产的应力集中源。齿轮轮齿齿面有效对硬化层薄的、磨削伤痕、磨削凸台所生产的应力集中源的地方,容易生产早期磨损、胶合、疲劳应力源等问题,严重影响齿轮的寿命和可靠性。
技术实现思路
[0004]本专利技术的目的是为了解决通过磨齿工艺进行齿向修形的问题,而提出的一种基于滚齿加工的靠模伺服齿向修形机构及其齿向修形的数学模型。
[0005]为了实现上述目的,本专利技术对普通滚齿机改造,增加齿向修形功能,实现靠模伺服齿向修形技术。
[0006]普通滚齿机包括刀架和旋转工作台,待加工工件的下端被卡盘固定夹持旋转工作台上,待加工工件的上端被固定臂架上的顶针固定,刀架上安装滚刀,滚刀通过旋转可在待加工工件进行滚齿加工。
[0007]本专利技术基于普通滚齿机的滚齿加工提出一种靠模伺服齿向修形机构,靠模伺服齿向修形机构包括靠模、齿条杆、导杆、输入齿轮、中间齿轮、输出齿轮和输出轴,所述靠模固定连接用于安装滚刀的刀架,所述输出轴连接用于驱动旋转工作台动作的工作台手摇蜗杆,旋转工作台用于安装待加工工件。
[0008]具体的,所述导杆的一端设置与靠模接触的滚轮,所述导杆的另一端固定连接齿条杆,所述齿条杆与输入齿轮啮合,所述输入齿轮与中间齿轮同轴固定连接,所述中间齿轮用于与输出齿轮啮合,所述输出齿轮固定套接于结合套,所述结合套与输出轴同轴滑动连接。
[0009]进一步的,所述结合套一侧设置拨叉,所述拨叉用于拨动结合套和输出齿轮,使中间齿轮和输出齿轮啮合或者分离。齿轮箱外部设置用于拨动拨叉的手动拨动件。
[0010]进一步的,本靠模伺服齿向修形机构还包括齿轮箱,齿轮箱固定于机架上,所述输入齿轮、中间齿轮、输出齿轮、结合套和拨叉位于齿轮箱内部,输入齿轮和中间齿轮的共同轴、结合套和输出轴与齿轮箱旋转连接,所述齿条杆贯穿齿轮箱与输入齿轮啮合,所述输出轴的两端从齿轮箱输出,输出轴的一端连接手摇盘,输出轴的另一端连接用于驱动旋转工作台动作的工作台手摇蜗杆。
[0011]优选的,所述齿轮箱的外部固定设置支撑杆,所述支撑杆用于在水平方向支撑导杆并对导杆进行导向,防止导杆的弯曲。支撑杆与导杆之间设置弹簧,给予导杆一端的滚轮与靠模接触趋势。
[0012]滚刀自上往下运动时,靠模跟着滚刀的刀架同步自上往下运动,靠模的上下移动产生了滚轮的左右相对移动,滚轮可推动导杆和齿条杆移动,齿条杆带动输入齿轮转动,当中间齿轮和输出齿轮啮合,输入齿轮通过中间齿轮、输出齿轮和结合套将动力从输出轴输出,最后输出轴将运动传递给滚齿机使旋转工作台产生进给的工作台手摇蜗杆,使滚刀在垂直于齿轮直径的径面方向产生相对移动,完成齿轮滚齿滚齿的齿轮齿向修鼓滚削。
[0013]进一步的,还包括手动齿轮,手动齿轮位于齿轮箱内部并与齿轮箱旋转连接,所述手动齿轮与中间齿轮啮合,手动齿轮的齿轮轴一端设置手摇杆。
[0014]在进行滚刀对刀和滚刀脱出齿轮工作时,拨动拨叉,脱开中间齿轮和输出齿轮的啮合,通过手摇杆摇动手动齿轮,手动齿轮通过中间齿轮和输入齿轮带动齿条杆移动,使导杆一端的滚轮离开靠模。
[0015]在安装有待加工工件的工作台需要退出时,拨动拨叉,脱开中间齿轮和输出齿轮的啮合,用手摇动输出轴一端的手摇盘,通过输出轴带动旋转工作台和整个系统退出。
[0016]本专利技术还提供一种靠模伺服齿向修形机构的数学模型。
[0017]假设齿向任意点修形量为
△
,则伺服靠模的升程为L1,可得出:
[0018]L1=2
△×
1.46
×
a
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(1)
[0019]式中a为机构放大倍数;1.46为分度圆上的公法线转换为径向进刀的转换常数。
[0020]根据工作原理,输入齿轮的瞬时弧长C1与靠模的升程为L1相等,
[0021]则有:L1=C1
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(2)
[0022]根据齿轮节圆的关系分析可以得出,输入齿轮的瞬时弧长C1:
[0023]C1=1/2πm1
×
Z1
×
ψ1
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(3)
[0024]式中m1为齿轮1的模数,Z1为齿数,ψ1为瞬时转角;
[0025]同理可得中间齿轮的瞬时弧长C2和输出齿轮的瞬时弧长C3,其中:
[0026]C2=1/2πm2
×
Z2
×
ψ2
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(4)
[0027]式中m2为齿轮2的模数,Z2为齿数,ψ2为瞬时转角;
[0028]C3=1/2πm3
×
Z3
×
ψ3
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(5)
[0029]式中m3为齿轮3模数,Z3为齿数,ψ3为瞬时转角;
[0030]由齿轮之间传动的相互关系可确定以下条件关系式:
[0031]ψ1=ψ2,ψ3=ψ4
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(6)
[0032]式中ψ4为滚齿机手摇蜗杆的瞬时转角;
[0033]ψ2/ψ3=Z3/Z2
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(7)
[0034]Ψ4/ψ5=Z5/Z4
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(8)
[0035]式中:Z4为滚齿机手摇蜗杆的齿数,Z5为滚齿机蜗轮的5的齿数,ψ5为滚齿机蜗轮的瞬时转角,
[0036]从而得到齿向修形使滚齿机工作台瞬时移动的距离为:
[0037]Lm=2
×
Δ
×
1.46
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(9)
[0038]同时,本文档来自技高网...
【技术保护点】
【技术特征摘要】
1.基于滚齿加工的靠模伺服齿向修形机构,其特征在于,包括靠模(1)、齿条杆(2)、导杆(3)、输入齿轮(6)、中间齿轮(7)、输出齿轮(8)和输出轴(10),所述靠模(1)固定连接用于安装滚刀(18)的刀架(17),所述输出轴(10)连接用于驱动旋转工作台(19)动作的工作台手摇蜗杆;所述导杆(3)的一端设置与靠模(1)接触的滚轮(5),所述导杆(3)的另一端固定连接齿条杆(2),所述齿条杆(2)与输入齿轮(6)啮合,所述输入齿轮(6)与中间齿轮(7)同轴固定连接,所述中间齿轮(7)用于与输出齿轮(8)啮合,所述输出齿轮(8)固定套接于结合套(9),所述结合套(9)与输出轴(10)同轴滑动连接,所述结合套(9)一侧设置用于拨动结合套(9)使中间齿轮(7)和输出齿轮(8)啮合或者分离的拨叉(11)。2.根据权利要求1所述的靠模伺服齿向修形机构,其特征在于,还包括手动齿轮(12),所述手动齿轮(12)与中间齿轮(7)啮合。3.根据权利要求1或者2所述的靠模伺服齿向修形机构,其特征在于,还包括齿轮箱(13),所述输入齿轮(6)、中间齿轮(7)、输出齿轮(8)、结合套(9)、拨叉(11)和结合套(12)位于齿轮箱(13)内部,输入齿轮(6)和中间齿轮(7)的共同轴、结合套(9)和输出轴(10)与齿轮箱(13)旋转连接,所述齿条杆(2)贯穿齿轮箱(13)与输入齿轮(6)啮合,所述输出轴(10)的一端从齿轮箱(13)输出。4.一种滚齿机,其特征在于,包括权利要求1、2或者3所述的靠模伺服齿向修形机构。5.基于权利要求1或者2所述的靠模伺服齿向修形机构的数学模型,其特征在于,假设齿向任意点修形量为
△
,则伺服靠模的升程为L1,可得出:L1=2
△×
1.46
×
a
ꢀꢀꢀ
(1)式中a为机构放大倍数;1.46为分度圆上的公法线转换为径向进刀的转换常数;根据工作原理,输入齿轮的瞬时弧长C1与靠模的升程为L1...
【专利技术属性】
技术研发人员:石卫民,郭学农,向日舜,
申请(专利权)人:益阳康益机械发展有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。