一种硅基材料及其制备方法和应用技术

技术编号:34752271 阅读:13 留言:0更新日期:2022-08-31 18:48
本发明专利技术涉及一种硅基材料及其制备方法和应用,制备方法包括:将设定镁:硅摩尔比的硅氧烷材料和金属镁粉分散于矿物油中,得到分散液A;将分散剂分散于矿物油中,得到分散液B;将膨胀石墨分散于矿物油中,得到分散液C;将分散液A、分散液B和分散液C按照1:1:1的质量比例混合,经过砂磨、乳化处理,在乳化过程中的剪切力作用下,由膨胀石墨剥离出石墨烯,得到石墨烯浆料;将石墨烯浆料进行喷雾干燥后,在氮气氛围下对喷雾干燥产物进行烧结,使得硅氧烷材料裂解生成氧化硅,同时在金属镁粉的作用下还原得到纳米硅,并形成硅酸镁,由此得到石墨烯原位复合纳米硅的硅基材料。采用本发明专利技术制备方法获得的硅基材料,能够使锂电池具有更高的能量密度。密度。密度。

【技术实现步骤摘要】
一种硅基材料及其制备方法和应用


[0001]本专利技术涉及材料
,尤其涉及一种硅基材料及其制备方法和应用。

技术介绍

[0002]锂离子电池自上世纪90年代商业化以来,已逐步占据了便携式消费类电子市场,在电动汽车,储能领域也有广阔的发展前景。自锂离子电池面世以来,碳材料就一直是负极材料的首选,碳基负极材料具有热稳定性好,平衡电位较高以及首周库伦效率高等优点。但是,因受限于碳基负极材料的理论容量只有372 mAh/g,其理论比容量难以进一步提升。硅基负极材料室温理论比容量为3589mAh/g,远高于石墨材料。此外,硅基材料还具有储量丰富、成本低廉、环境友好等优势。但是,硅基材料脱嵌锂产生的体积膨胀限制了其应用。
[0003]石墨烯是有效改善硅基材料体积膨胀的材料之一。但是石墨烯的大规模制备存在着很大的工业限制,包括微机械剥离法、外延生长法、化学气相沉淀(CVD)法和氧化石墨还原法在内的众多制备方法目前还不能满足石墨烯制备的产业化的要求。这也极大地限制了石墨烯材料在锂电池负极材料的产业应用。

技术实现思路

[0004]本专利技术实施例提供了一种硅基材料及其制备方法和应用,通过硅氧烷材料的分散液混合膨胀石墨,利用液体高速剪切力剥离出石墨烯;同时,石墨烯表面负载着硅氧烷材料,经过高温作用,硅氧烷材料裂解生产氧化硅并被还原成纳米硅,与石墨烯原位复合得到本专利技术的硅基材料。
[0005]第一方面,本专利技术实施例提供了一种硅基材料的制备方法,包括:将设定镁:硅摩尔比的硅氧烷材料和金属镁粉分散于矿物油中,得到分散液A;将分散剂分散于矿物油中,得到分散液B;将膨胀石墨分散于矿物油中,得到分散液C;将分散液A、分散液B和分散液C按照1:1:1的质量比例混合,经过砂磨、乳化处理,在乳化过程中的剪切力作用下,由膨胀石墨剥离出石墨烯,得到石墨烯浆料;将石墨烯浆料进行喷雾干燥后,在氮气氛围下对喷雾干燥产物进行烧结,使得硅氧烷材料裂解生成氧化硅,同时在金属镁粉的作用下还原得到纳米硅,并形成硅酸镁,由此得到石墨烯原位复合纳米硅的硅基材料。
[0006]优选的,所述硅氧烷材料具体包括硅氧烷及其衍生物;所述分散剂包括羧甲基纤维素钠、明胶、海藻胶、甲基纤维素、聚乙烯醇、聚乙烯吡咯烷酮中的一种或几种;所述硅基材料的结构组成中,石墨烯包覆纳米硅和硅酸镁构成的内核颗粒,且石墨烯和所述内核颗粒之间具有作为缓冲结构的分散剂碳化层。
[0007]优选的,所述分散液A中,硅氧烷材料和矿物油的质量比为1:19

1:4;所述分散液B中,分散剂和矿物油的质量比为1:99

1:9;
所述分散液C中,膨胀石墨和矿物油的质量比为1:99

1:9。
[0008]优选的,所述砂磨的过程中,砂磨的转速为500

5000rpm;所述砂磨的时间为4

24小时;所述乳化的时间为12

36小时。
[0009]优选的,所述烧结的温度为600

1000℃,烧结时间为2

12小时。
[0010]优选的,所述设定镁:硅摩尔比为1:1

1:2。
[0011]第二方面,本专利技术实施例提供了一种第一方面所述的制备方法制备得到的硅基材料。
[0012]第三方面,本专利技术实施例提出了一种锂电池负极材料,包括上述第二方面所述的硅基材料。
[0013]第四方面,本专利技术实施例提出了一种锂电池极片,包括上述第三方面所述的锂电池负极材料。
[0014]第五方面,本专利技术实施例提出了一种锂电池,包括上述第四方面所述的锂电池极片。
[0015]本专利技术实施例提出的硅基材料的制备方法,通过硅氧烷材料的分散液混合膨胀石墨,利用液体高速剪切力剥离出石墨烯;同时,石墨烯表面负载着硅氧烷材料,经过高温作用,硅氧烷材料裂解生产氧化硅并被镁还原成纳米硅,在高温作用下薄层的石墨烯受热发生卷曲,将生成的纳米硅包覆在石墨烯内部,使得材料具有更好的包覆性能,纳米硅与石墨烯原位复合得到本专利技术的硅基材料;同时金属镁还原氧化硅形成的氧化镁再继续与硅氧化物结合转化为稳定的硅酸镁,有助于消除不可逆容量,缓解体积变化,此外,硅酸镁的强键合网络还有利于提高机械模量,抑制内部裂纹,防止颗粒粉碎。
附图说明
[0016]下面通过附图和实施例,对本专利技术实施例的技术方案做进一步详细描述。
[0017]图 1 是本专利技术实施例的硅基材料的制备方法的流程图;图 2 是本专利技术实施例的硅基材料的扫描电子显微镜SEM图。
具体实施方式
[0018]下面通过附图和具体的实施例,对本专利技术进行进一步的说明,但应当理解为这些实施例仅仅是用于更详细说明之用,而不应理解为用以任何形式限制本专利技术,即并不意于限制本专利技术的保护范围。
[0019]本专利技术提出了一种硅基材料的制备方法,主要步骤流程如图1所示,包括:步骤110,将设定镁:硅摩尔比的硅氧烷材料和金属镁粉分散于矿物油中,得到分散液A;其中,硅氧烷材料具体包括硅氧烷及其衍生物,其结构特征中包含Si—O—Si键,可以为链状结构或者为环状结构。
[0020]分散液A中,硅氧烷材料和矿物油的质量比为1:19

1:4,例如可以为1:4、1:5、1:6、1:7、1:8、1:9、1:10、1:11、1:12、1:13、1:14、1:15、1:16、1:17、1:18、1:19或为范围内的任意比例。
[0021]步骤120,将分散剂分散于矿物油中,得到分散液B;
分散剂包括羧甲基纤维素钠、明胶、海藻胶、甲基纤维素、聚乙烯醇、聚乙烯吡咯烷酮中的一种或几种。分散剂和矿物油的质量比为1:99

1:9,例如,分散剂和矿物油的质量比可以为1:9、1:10、1:11、1:12、1:13、1:14、1:15、1:20、1:30、1:40、1:50、1:60、1:70、1:80、1:90、1:99或为范围内的任意比例。
[0022]步骤130,将膨胀石墨分散于矿物油中,得到分散液C;膨胀石墨(Expanded Graphite, EG) 是由天然石墨鳞片经插层、水洗、干燥、高温膨化得到的一种疏松多孔的蠕虫状物质,属于一种新型功能性碳素材料。膨胀石墨和矿物油的质量比为1:99

1:9,例如,可以为1:9、1:10、1:11、1:12、1:13、1:14、1:15、1:20、1:30、1:40、1:50、1:60、1:70、1:80、1:90、1:99或为范围内的任意比例。
[0023]步骤140,将分散液A、分散液B和分散液C按照1:1:1的质量比例混合,经过砂磨、乳化处理,在乳化过程中的剪切力作用下,由膨胀石墨剥离出石墨烯,得到石墨烯浆料;在砂磨、乳化处理过程中,砂磨的转速为500

5000rpm;砂磨的时间为4

24小时,例如4小时、8本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种硅基材料的制备方法,其特征在于,所述制备方法包括:将设定镁:硅摩尔比的硅氧烷材料和金属镁粉分散于矿物油中,得到分散液A;将分散剂分散于矿物油中,得到分散液B;将膨胀石墨分散于矿物油中,得到分散液C;将分散液A、分散液B和分散液C按照1:1:1的质量比例混合,经过砂磨、乳化处理,在乳化过程中的剪切力作用下,由膨胀石墨剥离出石墨烯,得到石墨烯浆料;将石墨烯浆料进行喷雾干燥后,在氮气氛围下对喷雾干燥产物进行烧结,使得硅氧烷材料裂解生成氧化硅,同时在金属镁粉的作用下还原得到纳米硅,并形成硅酸镁,由此得到石墨烯原位复合纳米硅的硅基材料。2.根据权利要求1所述的制备方法,其特征在于,所述硅氧烷材料具体包括硅氧烷及其衍生物;所述分散剂包括羧甲基纤维素钠、明胶、海藻胶、甲基纤维素、聚乙烯醇、聚乙烯吡咯烷酮中的一种或几种;所述硅基材料的结构组成中,石墨烯包覆纳米硅和硅酸镁构成的内核颗粒,且石墨烯和所述内核颗粒之间具有作为缓冲结构的分散剂碳化层。3.根据权利要求1所述的制备方法,其特征在于,所述分散液A中,硅氧烷材料和矿物油的质量比为1:19

1:4;所述分散液B中,分散剂和矿物油的质量比...

【专利技术属性】
技术研发人员:潘明军罗飞
申请(专利权)人:溧阳天目先导电池材料科技有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1