本发明专利技术公开了一种改进5步相移干涉算法在极小相移步长下的应用,具有这样的特征,包括以下步骤:步骤1,使相移器产生预先设定的极小相移步长;步骤2,由电荷耦合元件采样记录5幅干涉条纹图;步骤3,进一步由改进5步相移算法对干涉条纹图中的光强数据进行处理,得到不连续的包裹相位;步骤4,对不连续的包裹相位通过相位解包裹算法得到连续的待测相位分布。本发明专利技术在线性相移误差情况下,由于通过相位空间求和取平均运算,极大地减少了相位纹波误差,可计算得到高度近似实际相移的相移步长,进一步提高了5步Hariharan算法的精度。而在随机相移误差情况下,为完全利用干涉条纹信息,扩展了相移频率求解步骤。相移频率求解步骤。相移频率求解步骤。
【技术实现步骤摘要】
一种改进5步相移干涉算法在极小相移步长下的应用
[0001]本专利技术涉及相移干涉
,具体涉及一种改进5步相移干涉算法在极小相移步长下的应用。
技术介绍
[0002]相移干涉技术集成了数据采集、处理方式、算法技术于一体,是一种可通用的数据分析方法,而非一种具体光学硬件结构,具有高测量精度、实时性等特点,被广泛应用于光学元件三维形貌测量等领域。数字化相移干涉仪通常需要采用相移器,驱动参考臂移动,在参考光路和待测光路之间引入相位变化,同时,由光电探测器采集干涉光强信号,进一步传输到计算机,通过相移算法进行数据处理以提取待测相位。传统相移算法大多要求在干涉条纹图之间引入相等的特定相移量,如常用90
°
相移步长,当实际产生的相移步长与相移算法要求的相等时,该技术将拥有极高的测量精度。但由于环境中的随机振动,会使得相移量偏离理想设定值,相移算法求解得到的相位与真实相位之间便会产生相位误差,大大降低测量精度,限制了相移干涉技术的相位测量精度。
[0003]为提高对环境的抗干扰能力,现有解决方案主要采用随机相移这类算法。这类算法在常用90
°
相移步长下进行相移时,无需对相移设备进行标定,或直接利用环境随机振动作为相移量,通过最小二乘迭代或频域分析等方法求解相移量以及待测相位。随机相移算法允许相移量未知且随机,但也存在以下几点问题:1、对环境振动大小有一定要求,在环境振动较大时,计算出的相移量方向可能反向,最终导致无法判断相位符号,出现相位符号翻转问题。2、要求干涉光强图的背景强度、调制度均匀分布。3、难以处理剧烈振动引起的相移倾斜误差。4、对干涉条纹图中任一有效像素点上进行最小二乘迭代计算时需要耗费大量时间,降低相位求解速度。
技术实现思路
[0004]本专利技术是为了解决上述问题而进行的,目的在于提供一种改进5步相移干涉算法在极小相移步长下的应用。
[0005]本专利技术提供了一种改进5步相移干涉算法在极小相移步长下的应用,具有这样的特征,包括以下步骤:步骤1,使相移器产生预先设定的极小相移步长;步骤2,由电荷耦合元件采样记录5幅干涉条纹图;步骤3,进一步由改进5步相移算法对干涉条纹图中的光强数据进行处理,得到不连续的包裹相位;步骤4,对不连续的包裹相位通过相位解包裹算法得到连续的待测相位分布。
[0006]在本专利技术提供的改进5步相移干涉算法在极小相移步长下的应用中,还可以具有这样的特征:其中,步骤1中,极小相移步长的范围为5
°
~45
°
。
[0007]在本专利技术提供的改进5步相移干涉算法在极小相移步长下的应用中,还可以具有这样的特征:其中,步骤3~步骤4中,改进5步相移算法先通过2次使用3步法计算出2个相位分布,对这2个相位进行相减,通过对各像素点上的相减后的结果进行空间取平均运算求解
出相移量,再将该相移量代入5步算法公式中求解相位。
[0008]在本专利技术提供的改进5步相移干涉算法在极小相移步长下的应用中,还可以具有这样的特征:其中,步骤3中,具体计算过程如下:将电荷耦合元件记录的干涉条纹图中任意有效像素点位置(x,y)的光强表示为:
[0009][0010]式中,a(x,y)为背景光强,b(x,y)为干涉条纹调制幅度,表示待求解波前相位,第t帧干涉条纹图对应引入相移量δ(t)=ω0t,时域载波ω0为参考相位线性变化角频率,t为干涉条纹图离散采样时刻,取整数。取相移角频率ω0进行5步相移,当存在线性相移误差Δ,即实际时域角频率ω
′
=ω0+Δ,得到干涉条纹图序列{I
‑2,I
‑1,I0,I1,I2}:首先,对{I
‑1,I0,I1}、{I0,I1,I2}利用三步法公式(2)进行处理,分别计算得到相位对应相位
[0011][0012]两者相减可得:
[0013][0014]式中,ε与线性相移误差Δ有关。然后,对上式(3)在干涉图像素空间M
×
N上进行求和取平均值运算,根据三角函数特性,当相位分布满足大于0.5根条纹或完整条纹空间时,即消除误差正弦项,因此,计算得到与实际相移频率ω
′
高度近似的频率
[0015][0016]式(4)中W[]为包裹运算。
[0017]在本专利技术提供的改进5步相移干涉算法在极小相移步长下的应用中,还可以具有这样的特征:其中,步骤4中,具体计算过程如下:得到实际相移角频率后,将代入5步Hariharan算法公式(5),即式(5)中
[0018][0019]相移过程中的环境扰动被认为在参考相位中引入了随机相移误差,当在5步相移过程中存在一组正负随机误差Δ
′
={Δ
‑2,Δ
‑1,Δ1,Δ2}时,基于线性相移误差下相移角频率求解过程进行扩展,为完全利用干涉条纹序列信息,对干涉条纹序列{I
‑1,I0,I1}、{I0,I1,I2}、{I
‑2,I
‑1,I0}分别用三步法计算得到通过计算空间平均以尽可能消除误差函数:
[0020][0021][0022][0023]最后,将以上3个频率值取平均,得到近似实际相移量ω
′1(ω
′1=ω0±
Δ1)、ω
‑1′
(ω
′
‑1=ω0±
Δ
‑1)的平均值,将该平均值代入式(5)中求解待测相位:
[0024][0025]专利技术的作用与效果
[0026]根据本专利技术所涉及的改进5步相移干涉算法在极小相移步长下的应用,因为包括以下步骤:步骤1,使相移器产生预先设定的极小相移步长;步骤2,由电荷耦合元件采样记录5幅干涉条纹图;步骤3,进一步由改进5步相移算法对干涉条纹图中的光强数据进行处理,得到不连续的包裹相位;步骤4,对不连续的包裹相位通过相位解包裹算法得到连续的待测相位分布。
[0027]因此,本专利技术相对于传统固定相移步长算法,考虑到在进行如5
°
、10
°
、20
°
极小相移步长的5步相移时,相对于90度相移行程大大缩短,可忽略压电陶瓷位移曲线中迟滞和非线性效应,PZT相移曲线近似为直线,相移精度更高。同时,由相移干涉测量中的振动仿真可知,振动频率在CCD采样频率的一半的附近时,5步算法相位还原RMS误差较大。而当采用极小步长进行5步相移,所用相移时间大大降低,采样频率相对变快,意味着其敏感振动频率增大,而实际环境中的主要振动即为低频振动部分。缩短相移时间也可减少测量过程中环境随机振动的引入。因此,提出采用极小幅度相移步长,替代常见的90
°
相移步长产生干涉条纹图序列。相较于利用随机相移算法抗振,该方法从缩短相移以及干涉图采样时间角度进行抗振,可尽可能避免随机相移算法中出现的问题。
[0028]此外,本专利技术在线性相移误差情况下,由于通过相位空间求和取平均运算,极大地减少了相位纹波误差,可计算得到高度近似实际相本文档来自技高网...
【技术保护点】
【技术特征摘要】
1.一种改进5步相移干涉算法在极小相移步长下的应用,其特征在于,包括以下步骤:步骤1,使相移器产生预先设定的极小相移步长;步骤2,由电荷耦合元件采样记录5幅干涉条纹图;步骤3,进一步由改进5步相移算法对所述干涉条纹图中的光强数据进行处理,得到不连续的包裹相位;步骤4,对所述不连续的包裹相位通过相位解包裹算法得到连续的待测相位分布。2.根据权利要求1所述的改进5步相移干涉算法在极小相移步长下的应用,其特征在于:其中,步骤1中,所述极小相移步长的范围为5
°
~45
°
。3.根据权利要求1所述的改进5步相移干涉算法在极小相移步长下的应用,其特征在于:其中,步骤3~步骤4中,所述改进5步相移算法先通过2次使用3步法计算出2个相位分布,对这2个相位进行相减,通过对各像素点上的相减后的结果进行空间取平均运算求解出相移量,再将该相移量代入5步算法公式中求解相位。4.根据权利要求3所述的改进5步相移干涉算法在极小相移步长下的应用,其特征在于:其中,步骤3中,具体计算过程如下:将电荷耦合元件记录的干涉条纹图中任意有效像素点位置(x,y)的光强表示为:式中,a(x,y)为背景光强,b(x,y)为干涉条纹调制幅度,表示待求解波前相位,第t帧干涉条纹图对应引入相移量δ(t)=ω0t,时域载波ω0为参考相位线性变化角频率,t为干涉条纹图离散采样时刻,取整数,取相移角频率ω0进行5步相移,当存在线性相移误差Δ,即实际时域角频率ω
′
=ω0+Δ,得到干涉条纹图序列{I
‑2,I
‑1,I0,I1,I2}:首先,对{I
‑1,I0,I1}、{I0,I1,I2}利用三步法公式(2)...
【专利技术属性】
技术研发人员:韩森,陈柔婧,李雪园,
申请(专利权)人:苏州慧利仪器有限责任公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。