本发明专利技术提供了一种工地安全防护网检测方法及系统,方法S1:采集获得防护网图像数据;S2:对防护网图像数据进行处理,获得无钢管结构的防护网图像;S3:对无钢管结构的防护网图像进行大面积处理,得到防护网的整体图像模式数据;S4:对无钢管结构的防护网的图像,进行划分后处理,得到若干个小区域图像模式数据;S5:比较小区域和整体图像模式数据,输出疑似破损区域图像;S6:将疑似破损区域图像,输入防护网破损检测模型中,输出破损检测结果。系统包括图像采集单元、标记编号单元、第一通信单元、控制单元以及判断单元。本发明专利技术基于神经网络实现对防护网快速准确的破损识别,更好的保证建筑施工人员安全。施工人员安全。施工人员安全。
【技术实现步骤摘要】
工地安全防护网检测方法及系统
[0001]本专利技术涉及工地安全防护网检测识别
,特别涉及工地安全防护网检测方法及系统。
技术介绍
[0002]建筑施工是指工程建设实施阶段的生产活动,是各类建筑物的建造过程,也可以说是把设计图纸上的各种线条,在指定的地点,变成实物的过程。它包括基础工程施工、主体结构施工、屋面工程施工、装饰工程施工等,施工作业的场所称为建筑施工现场或叫施工现场,也叫工地,在高层建筑施工中,往往会使用到防护网,其作用是在建筑工人失手(失足)或建筑材料、工具等物坠落时,减轻人员伤亡或物击伤害的程度。但是由于建筑工地情况复杂,这些安全防护网很容易出现损坏,一旦损坏防护的效果也骤然降低,安全性能大打折扣。
[0003]现有技术中,通常采用人工观察的方式获得工地安全防护网的破损情况,但这种方式需要耗费大量的人力物力,且检测结果受限于人的精力而不准确。
技术实现思路
[0004]为解决上述问题,本专利技术提供了工地安全防护网检测方法及系统,通过采集建筑工地安全防护网的图像进行纹理处理以及网格处理,分离获得防护网的图像,并分别进行大面积处理和划分处理,得到整体图像和若干小区域图像,通过两者对比,标记处疑似破损区域的图像,进而输入到神经网络模型中进行识别,摆脱了人工进行安全防护网破损检查的局限性。
[0005]本专利技术提供了一种工地安全防护网检测方法,具体技术方案如下:S1:采集建筑工地安全防护网的图像,获得建筑工地安全防护网图像数据。
[0006]S2:对所述防护网图像数据进行初步纹理处理,并进行网格提取,消除钢管结构的区域,获得无钢管结构的建筑工地安全防护网图像。
[0007]S3:对得到的无钢管结构的建筑工地安全防护网图像进行大面积处理,得到安全防护网的整体图像模式。
[0008]S4:对得到的无钢管结构的建筑工地安全防护网的图像,进行划分,划分为若干个小区域,再做处理,得到防护网的若干个小区域图像模式。
[0009]S5:比较小区域图像模式数据和整体图像模式数据,进行疑似破损判定,根据比较结果,输出疑似破损区域图像;S6:将所述疑似破损区域图像,输入防护网破损检测模型中,输出破损检测结果。
[0010]S7:对所述破损检测结果中的破损区域进行二次检测确认,再次确认该区域的建筑工地安全防护网是否存在破损,并将二次检测确认的结果输出;进一步的,步骤S5之后,还包括:获得模型所述疑似破损区域图像,基于图像疑似破损区域中心,进行放大,获得放
大后的图像;对放大后的图像数据,迭代执行步骤S1
‑
S5的操作,获得经过放大操作后对应的疑似破损区域图像,输入到防护网破损检测模型中,得到破损检测结果。
[0011]进一步的,步骤S6之后,还包括:S7:对所述破损检测结果中的破损区域进行二次检测确认,再次确认该区域的建筑工地安全防护网是否存在破损,并将二次检测确认的结果输出。
[0012]进一步的,步骤S7中,获取破损检测结果中破损区域的视频图像数据,进行频谱分析,对所述破损检测结果中的破损区域进行二次检测确认。
[0013]进一步的,在步骤S1之后,还包括对防护网图像数据进行预处理操作,所述预处理包括:图像滤波去噪处理、图像锐化处理和形态学处理。
[0014]进一步的,步骤S2中,所述网格提取,具体过程如下:S201:对预处理后得到的图像,通过边缘检测提取图像特征;S202:将图像的所有明显特征提取,再通过霍夫直线检测检出直线,根据图像中直线的交叉汇合描述网格,将网格提取出后,得到剩余的区域。
[0015]进一步的,步骤S5中,进行疑似破损判定时,若小区域图像模式与整体图像模式差距较大,则将该小区域图像标记为疑似破损区域图像,并输出。
[0016]进一步的,步骤S5中,所述疑似破损判定,具体过程如下:S501:对若干个小区域图像,使用灰度共生矩阵将每个小区域图像的纹理特征进行分析,得到每个小区域图像的纹理特征,包括能量、熵、惯性矩以及相关性;S502:将四个纹理特征合为一个四维的特征矢量,根据每个小区域的图像之间的四维特征矢量筛选出纹理特征异常的小区域图像,标记为疑似破损区域。
[0017]进一步的,步骤S6,具体过程如下:S601:将疑似破损区域头像,缩放至统一的预设尺寸大小,并输入至训练好的CNN卷积神经网络中,提取每个疑似破损区域头像的特征信息;S602:将特征信息输入到分类模型中,判断是否存在破损,并输出对应的识别结果。
[0018]本专利技术还提供了一种工地安全防护网检测系统,所述系统包括图像采集单元、标记编号单元、第一通信单元、控制单元以及判断单元;所述图像采集单元,通过设置的摄像装置,用于采集建筑工地现场的安全防护网图像数据以及定位、时间数据信息;所述标记编号单元,与所述图像采集单元的摄像装置关联,用于对所述图像采集单元的摄像采集点所处的顺序位置进行编号标记;所述第一通信单元,与所述图像采集单元和所述标记编号单元连接,用于将采集的建筑工地安全防护网的图像数据信息、摄像采集点的编号信息、定位和时间信息发送至控制单元;第一通信单元接收数据信息时,编号信息与图像数据信息,以及图像数据信息采集时对应的定位和时间信息进行关联;所述控制单元,与所述摄像机、所述标记编号单元和所述第一通信单元电连接,用于对各单元进行协调控制;所述判断单元,存储有上述任一所述的方法,用于对采集的图像数据进行破损检
测识别。
[0019]本专利技术的有益效果如下:通过采集建筑工地安全防护网的图像进行纹理处理,将处理后的图像进行后续破损识别,保证对防护网这种特殊图像后续检测的准确性,同时还通过网格处理,分离获得防护网的图像,避免采集的图像中,存在非防护网的其它图像部分响后续的破损识别,保证识别的准确性。
[0020]对经过一系列处理后得到整体图像和若干小区域图像,进行对比,先标记出疑似破损区域的图像,再输入到神经网络模型中进行识别,减少运算压力,在同样运算条件下,增大了采集图像检测的范围,通过采集防护网图像,基于神经网络进行破损识别,摆脱了人工进行安全防护网破损检查的局限性。
附图说明
[0021]图1是本专利技术实施例1的方法流程示意图;图2是本专利技术实施例2的方法流程示意图;图3是本专利技术的网格提取流程示意图;图4是本专利技术的疑似破损判定流程示意图;图5是本专利技术的破损检测流程示意图。
具体实施方式
[0022]在下面的描述中对本专利技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本专利技术的一部分实施例,而不是全部的实施例。基于本专利技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本专利技术保护的范围。
[0023]实施例1本专利技术的实施例1公开了一种工地安全防护网检测方法,如图1所示,具体步骤流程如下:S1:采集建筑工地安全防护网的图像,获得建筑工地安全防护网图像数据;本实施例中,还需对采集的工地安全防护网图像进行滤波去噪处理、锐化本文档来自技高网...
【技术保护点】
【技术特征摘要】
1.一种工地安全防护网检测方法,其特征在于,包括:S1:采集建筑工地安全防护网的图像,获得防护网图像数据;S2:对所述防护网图像数据进行初步纹理处理,并进行网格提取,获得无钢管结构的防护网图像;S3:对得到的无钢管结构的防护网图像进行大面积处理,得到防护网的整体图像模式数据;S4:对得到的无钢管结构的防护网的图像,进行划分,划分为若干个小区域,再做处理,得到防护网的若干个小区域图像模式数据;S5:比较小区域图像模式数据和整体图像模式数据,进行疑似破损判定,根据比较结果,输出疑似破损区域图像;S6:将所述疑似破损区域图像,输入防护网破损检测模型中,输出破损检测结果。2.根据权利要求1所述的工地安全防护网检测方法,其特征在于,步骤S5之后,还包括:获得模型所述疑似破损区域图像,基于图像疑似破损区域中心,进行放大,获得放大后的图像;对放大后的图像数据,迭代执行步骤S1
‑
S5的操作,获得经过放大操作后对应的疑似破损区域图像,输入到防护网破损检测模型中,得到破损检测结果。3.根据权利要求1或2任一所述的工地安全防护网检测方法,其特征在于,步骤S6之后,还包括:S7:对所述破损检测结果中的破损区域进行二次检测确认,再次确认该区域的建筑工地安全防护网是否存在破损,并将二次检测确认的结果输出。4.根据权利要求3所述的工地安全防护网检测方法,其特征在于,步骤S7中,获取破损检测结果中破损区域的视频图像数据,进行频谱分析,对所述破损检测结果中的破损区域进行二次检测确认。5.根据权利要求1所述的工地安全防护网检测方法,其特征在于,在步骤S1之后,还包括对防护网图像数据进行预处理操作,所述预处理包括:图像滤波去噪处理、图像锐化处理和形态学处理。6.根据权利要求5所述的工地安全防护网检测方法,其特征在于,步骤S2中,所述网格提取,具体过程如下:S201:对预处理后得到的图像,通过边缘检测提取图像特征;S202:将图像的所有明显特征提取,再通过霍夫直线检测检出直线,根据图像中直线的交叉汇合描述网格,将...
【专利技术属性】
技术研发人员:吴猛猛,张鹏,马世彬,
申请(专利权)人:成都鹏业软件股份有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。