本发明专利技术公开了一种基于免疫粒子群算法的超声电机控制方法,其基于免疫系统中发生T细胞和B细胞中的受体编辑机制和疫苗接种模型,提出了一种基于免疫粒子群算法的超声电机控制器,首先建立常规控制器或者是一些基于智能技术的控制器,随机给定控制器的初始参数,形成初始粒子,并应用粒子群优化算法来更新,在粒子的进化过程中,增加结构发育与结构退化操作实现控制器结构的进化,每隔一定的代数,鉴别出不活跃的趋向凋亡的细胞受体,并对它们进行受体编辑,当达到预定的迭代精度后,输出粒子群算法寻找到的最优控制方案;本发明专利技术结合了先进的智能技术,基本实现了实时控制,提高了控制精度,降低了计算复杂性,实现了控制器的全自动设计。
【技术实现步骤摘要】
本专利技术涉及,特别涉及一种智能计算与自动控制方法,属于计算机应用与自动控制领域。
技术介绍
超声电机(Ultrasonic Motor,USM)是20世纪80年代发展起来的一种最具代表性的驱动器,它的问世,部分地满足了宇宙飞船、人造卫星、飞机、导弹、汽车、机器人、精密仪器等对驱动设备所提出的短、小、薄、低噪声、无电磁干扰、在恶劣环境下适应性强等要求。与传统电机相比,超声电机具有结构简单、响应速度快、转矩/质量比大、无需齿轮减速机构、可实现直接驱动、抗电磁干扰等特性。超声电机的出现不仅可以在许多场合替代普通的电磁电机,改善机械系统的性能,而且能够在一些电磁电机无法正常工作的场合显示出独特的作用。它突破了统治电机领域上百年的电磁波驱动理论,打破了由电磁效应获得转速和转矩的概念,具有划时代意义,是当前科学研究前沿的高新技术之一。超声电机有别与传统的电磁电机,随着驱动条件的改变,表现出极强的非线性特性,对它建立精确的数学模型是很困难的,因此采用传统方法难以对其实施精确快速地控制。虽然利用某些智能技术,超声电机的控制取得了一定的进展,但在实际应用中仍然存在着如控制器的结构难以选择、参数的维数难以确定、实时性差、控制精度低等许多难题。为了更有效地控制超声电机,利用粒子群优化算法,并基于免疫系统中发生T细胞和B细胞中的受体编辑机制和疫苗接种模型,提出了一种新型的超声电机免疫粒子群控制方法。这里的控制器可以是常规控制器或者是一些基于智能技术的控制器,控制器中的待定参数或规则由免疫粒子群算法来优化获得。
技术实现思路
本专利技术的主要目的是提供,这种方法基于免疫粒子群优化算法,克服通常方法对初始值敏感容易陷入局部极值的弱点;收敛速度不依赖于待辨识和控制系统的维数,极大地提高了收敛速度;不需计算权值的动态导数,降低了算法的计算复杂性;控制器的结构和参数可以根据具体的训练过程来调整,实现了控制器的全自动设计。本专利技术是通过以下技术方案实现的(1)假设在一个D维的目标搜索空间中,有m个粒子组成一个群落,其中第i个粒子表示为一个D维的向量Xi=(xi1,xi2,…,xiD),i=1,2,…,m即第i个粒子在D维搜索空间中的位置是Xi。换言之,每个粒子的位置就是一个潜在的解。将Xi带入一个目标函数就可以计算出其适应值,根据适应值的大小衡量解的优劣。第i个粒子的“飞翔”速度也是一个D维的向量,记为Vi=(vi1,vi2,…,viD)。记第i个粒子迄今为止搜索到的最优位置为Pi=(pi1,pi2,…,piD),整个粒子群迄今为止搜索到的最优位置为Pg=(pg1,pg2,…,pgD)。对粒子可按下列公式操作Vi(k+1)=wVi(k)+c1r1(Pi-Xi(k))/Δt+c2r2(Pg-Xi(k))/Δt(1)Xi(k+1)=Xi(k)+Vi(k+1)Δt(2)其中,w为惯性权重,其值也可以自适应调整,随着迭代的进行线性的减小,c1和c2为调节Pi和Pg相对重要性的参数,r1和r2是介于之间的随机数。Vi∈,Vmax是常数,由具体问题设定,Δt是时间间隔,通常取为单位时间。(2)在标准的粒子群算法中,随着迭代的进行,越来越多的粒子将接近群体中最好的粒子,而失去它们的速度,变得越来越不活跃。发生T细胞和B细胞中的受体编辑是近几年才提出的一种免疫耐受的新机制。受体编辑现象是指T细胞和B细胞受体在特定的条件下还可以发生新的重排或突变,使其结构发生改变,从而使其原有的抗原受体特异性向其它特异性漂移或发生亲和力的变化。将一些亲和力低的或与自身反应的B细胞受体被删除并产生新受体。采用转基因动物模型进行的体内受体编辑实验表明,大约25%的B细胞发生了受体编辑,受体编辑进一步丰富了抗原受体的多样性。因此,在免疫粒子群系统中,待解决的问题即是抗原,每一个抗体都代表问题的一个解,同时每个抗体也即是粒子群中的一个粒子。抗原和抗体之间的亲和力由粒子群算法中的适应值来衡量。在提出的免疫粒子群系统中,每隔一定的代数我们要鉴别出不活跃的、趋向凋亡的细胞受体,也即是不活跃的粒子,对它们中的25%进行受体编辑。定义f‾=1nΣi=1nfi,]]>σf2=1nΣi=1n(fi-f‾)2---(3)]]>其中fi是第i个粒子的适应度,也是第i个抗体的亲和力,n是粒子群规模,f是所有粒子的平均适应度,σf2是适应度的方差,反映了群体的收敛程度。定义 τ2=σf2max{(fi-f‾)2,(j=1,2,···n)}---(4)]]>若τ2小于一个给定的较小的阈值,同时问题的理论最优解或期望最优解尚未达到,这时认为粒子群系统趋于早熟,对系统的趋于凋亡的抗原受体进行受体编辑操作。定义fg-fimax{(fg-fj),(j=1,···,n)}≤θ---(5)]]>其中θ是一个给定的较小的阈值,fg是最高的抗体亲和力。对于满足不等式(5)的抗原受体i进行受体编辑。(3)疫苗是在对流行病毒充分了解的基础上研制出的,通过疫苗接种可以有针对性地防止疾病,疫苗接种是免疫记忆临床应用的一个重要方面。将这一生物机制应用到计算模型中,疫苗指的是依据人们对待求问题所具备的或多或少的先验知识,从中提取出的一种基本的特征信息,这种特征信息可以看作是对待求的最佳个体所能匹配模式的一种估计,通过疫苗接种可以对搜索过程进行有目的地指导;本专利技术将这一模型应用于粒子群优化算法中,以提高抗体对抗原的识别能力,从而提高粒子群算法的性能;这一过程通过从待求问题或求解过程中有选择的提取一些特征信息作为疫苗,通过疫苗接种对搜索过程进行有目的地指导;在迭代过程中每间隔一定的代数通过从当前群体中最优的个体提取疫苗,并且按着疫苗接种概率自适应地对其余粒子进行疫苗接种。附图说明图1为本专利技术的控制结构图。图2为本专利技术的流程示意图。具体实施例方式以下对本专利技术做详细的说明步骤(1)建立超声电机的控制器,该控制器可以是常规控制器或者是一些基于智能技术(如人工神经网络,模糊逻辑等)的控制器;步骤(2)随机给定超声电机的初始控制器参数,并根据这些参数形成初始粒子; 步骤(3)根据(1)和(2)式,用下面的公式对粒子进行更新;步骤(4)在粒子的进化过程中,增加结构发育与结构退化操作实现控制器结构的进化,按发育概率pa来决定是否增加控制器中参数的数目,新增参数值可根据初始范围随机选择;按照退化概率pd来决定是否删除控制器中某些参数,同时将与之关联的参数重置为零,而不将其删除,这样可以实现粒子结构的一致.这里pa,pd和pe按下式进行选取pa=pd=pe=exp(-1NG·γ)---(6)]]>其中,NG表示自上次出现局部最优解以来至当前代连续未出现更优解的代数,γ是一个调整系数;步骤(5)每隔一定本文档来自技高网...
【技术保护点】
一种基于免疫粒子群算法的超声电机控制方法,至少包括如下步骤:步骤(1):建立超声电机的控制器模型;步骤(2):根据给定的超声电机的控制器参数形成初始粒子;步骤(3):对粒子进行更新;步骤(4):增加结构发育与结构退化操作实现控制器结构的进化;步骤(5):每隔一定的代数,要鉴别出不活跃的粒子进行受体编辑;步骤(6):从超声电机中提取特征信息作为疫苗,进行有目的的指导;步骤(7):进行免疫检测;步骤(8):随机选择一些粒子进行进化操作;步骤(9):重复步骤(3)~(8),直到找到最优控制方案。
【技术特征摘要】
【专利技术属性】
技术研发人员:梁艳春,徐旭,时小虎,葛宏伟,张巧,
申请(专利权)人:吉林大学,
类型:发明
国别省市:82[中国|长春]
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。