本发明专利技术公开了一种用于插件电路板电解电容极性缺陷检测的方法,主要解决现有技术中电容极性检测精度低和准确度低等技术问题。本发明专利技术通过机器学习极性判定和电容俯视图展开极性判定的融合算法,配合检测灯箱多光源设计以采集电容图片,可提高检测结果准确性和检测精度。尤其是其中的电容俯视图展开极性检测方法,可通过形态学处理,将经过预处理的俯视图片进行依据极坐标展开,将所电测的电容俯视图中的极坐标系环状图像转换为便于处理的笛卡尔坐标系矩形图像,从而将环形图像特征转换为直线图像特征,提升检测精度、确保检测结果的准确性。准确性。
【技术实现步骤摘要】
一种用于插件电路板电解电容极性缺陷检测的方法
[0001]本专利技术涉及电子元器件检测
,尤其涉及一种用于插件电路板电解电容极性缺陷检测的方法。
技术介绍
[0002]根据电路板上元器件引脚是否穿透电路板,可分为贴片元器件和直插元器件两类。其中尺寸较大、较长或者异形直插元器件的插装仍然需要由人工完成,存在漏插、误插、反插等情况,进而影响产品合格率。电解电容作为直插元件板元件中最常用元件之一在电路板中被大量应用。电解电容具有高度尺寸相差大、容易倒伏、有安装极性等原因,容易在人工插装中产生极性错误,因此必须对电解电容的极性缺陷进行有效检测。而电解电容的极性错误是最常见且难以检测的必要项目。目前电路板组装行业采用机器视觉方法或者人工目视检测方式对一些电解电容极性缺陷进行检测。机器视觉因兼容性等原因,无法有效检测较高的电容元器件。人工目视检测方式有易疲劳、错误率高、效率极低的缺点。
[0003]例如,在中国专利文献上公开的“一种印刷电路元件极性的机器视觉检测方法”,其公告号为CN103675588A,该专利技术在测试区域内设置传送待测印刷电路板的导轨,导轨上设有由传感器控制的行程开关,导轨上方设有罩住测试区域的封闭工作箱,在封闭工作箱内部设置可调节亮度的光源和多个传感器,将不同类型待测元件依次放在含有可调节光源的封闭工作箱测试区域内,获取元件样本;按照电容或二极管型号分类,确定待检元件需要的检测参数,针对印刷电路板元件位置不同,划定不同元件在电路板上的相对位置,通过版型标识符号、元件型号、位置和检测参数值制定不同印刷电路板对应的标准版型;利用机器视觉代替人工目检的方式,减少人员疏忽和极性元件的极性方向漏检错误的情形,降低生产成本,提升产品质量。
[0004]该专利技术中通过采集电容图片,识别电容标识是否在指定方向位置来判断电容极性是否正确,但其检测结果准确性完全依赖于所采集到的图片质量以及与标准版型的对比结果,检测精度和准确度均有待提升。
技术实现思路
[0005]本专利技术主要解决现有技术中电容极性检测精度低和准确度低的问题,提供了一种用于插件电路板电解电容极性缺陷检测的方法,通过机器学习极性判定和电容俯视图展开极性判定的融合算法,配合检测灯箱多光源设计以采集电容图片,提高检测结果准确性和检测精度。
[0006]本专利技术的上述技术问题主要是通过下述技术方案得以解决的:一种用于插件电路板电解电容极性缺陷检测的方法,包括以下步骤:S1:采集电容图片;S2:利用训练好的机器学习检测模型,进行电容极性判定;S3:利用电容俯视图坐标系展开检测法进行电容极性判定;
S4:将两种结果进行分析,若两种判定结果一致,且判定结果与模板极性一致,则判定当前电测的电容为良品;否则,判定当前电测的电容出现极性反向缺陷,为次品。
[0007]本方案通过机器学习检测模型和电容俯视图极坐标展开检测法两种检测方式完成二次检测,并就两次检测结果与模板极性进行比对,最终确定所电测的电容是否为良品,对硬件设备要求不高,且大大提高了检测结果的准确性。
[0008]作为优选,步骤S1具体包括以下过程:在检测灯箱顶部和四周分别设置LED平面光源;在检测灯箱顶部设置工业相机以采集电容图片。通过在检测灯箱中立体设置多个平面光源,保证图片采集环境的亮度均匀,提高工业相机所采集到的检测样品俯视图的图片质量,降低可能由于图片质量引起的判断结果错误可能性。
[0009]作为优选,步骤S2具体包括:图片预处理;HOG特征提取;将处理结果输入训练好的机器学习检测模型完成极性判定,其中的SVM支持向量机。通过预先采集电容图片形成训练集,进行机器学习检测模型的训练,并输出训练文件,为后续机器学习模型进行极性判断做好准备。
[0010]作为优选,所述图片预处理具体包括:灰度化处理、统一像素尺寸(如x*x)以及滤波去噪,即图像去噪;所述HOG特征提取具体包括:以像素尺寸(x*x)的胞元单位获取图像的梯度统计信息。
[0011]作为优选,步骤S3具体包括:俯视图片预处理、图片从极坐标转换为笛卡尔坐标、干扰信息滤除、特征信息提取以及极性判定。通过形态学处理,将经过预处理的俯视图片进行依据极坐标展开,将所电测的电容俯视图中的环状图像转换为便于处理的矩形图像,方便后续干扰信息滤除以及特征信息提取,最终提高极性判断准确度,并可就判断结果与机器学习方法判断结果进行比对,互相进行校对,融合成新的算法,提高检测性能。
[0012]作为优选,所述俯视图片预处理过程具体包括:灰度化处理、像素尺寸统一、灰度梯度强化、以及高斯滤波。
[0013]作为优选,所述极坐标转换过程具体包括:首次极坐标映射、映射中心校正、二次展开,其中映射中心校正根据首次极坐标映射展开后的内外圆分界曲线的水平度进行调整,最后将极坐标图片展开到笛卡尔系坐标。由于电容俯视图可能不是标准的环状图像,在首次极坐标映射之后得到的矩形图像信息可能并不规则,因此需根据首次极坐标映射展开后的内外圆分界曲线的水平度对映射中心进行校正,保证极坐标映射形成的图像信息准确完整。
[0014]作为优选,所述干扰信息滤出过程具体包括:文字信息滤除以及椒盐噪声滤除,其中文字信息为电容顶部塑封区域中除极性标识之外的其他符号信息。可滤除可能影响判断结果的数字、字母等其他符号信息,得到准确的极性标识图像信息,并据此进一步判断极性情况。
[0015]作为优选,所述特征信息提取过程具体包括:内外圆分界曲线提取、分界平滑、提取极性ROI区域以及局部ROI区域自适应二值化,得到经过处理后的极性标识区域图像,包括极性标识区域灰度高于阈值的亮点数量等信息。
[0016]作为优选,所述极性判定过程具体包括:设定极性区域内灰度高于阈值的亮点个数对应的极性情况,计算极性区域内灰度高于阈值的亮点个数,判定极性。通过极性区域内亮点个数识别极性标识形状,最终判定所电测的电容极性是否正常。
[0017]本专利技术的有益效果是:1.采用机器学习模型检测法进行电容极性的初步检测,训练模型简单有效,对处理器等硬件设备要求不高。
[0018]2.采用电容俯视图检测法进行电容极坐标检测,将电容俯视图中的环状图像通过极坐标映射转换为矩形图像,便于后续图像处理完成极性判定,大大提高的实际检测性能。
[0019]3.结合机器学习模型检测法和电容俯视图检测法两种检测方式,将两种检测结果以及模板极性进行比对,最终得出极性判断结果,两种检测结果的判定结果可以互相校对,大大提高了电容极性检测的可靠性。
[0020]4.独特的检测灯箱环境光源设计,保证采集到的电容图像质量,方便后续的图片处理,提高了检测准确度。
附图说明
[0021]图1是本专利技术的一种用于插件电路板电解电容极性缺陷检测的方法流程图。
[0022]图2是本专利技术的机器学习模型电容极性检测方法流程图。
[0023]图3是本专利技术的电容俯视图展开的电容极性检测方法流程图。
[0024]图4是本专利技术实施例中电容俯视图展开检本文档来自技高网...
【技术保护点】
【技术特征摘要】
1.一种用于插件电路板电解电容极性缺陷检测的方法,其特征在于,包括以下步骤:S1:采集电容图片;S2:利用训练好的机器学习检测模型,进行电容极性判定;S3:利用电容俯视图坐标系展开检测法进行电容极性判定;S4:将上述两种结果进行分析,若两种判定结果一致,且判定结果与模板极性一致,则判定当前电测的电容为良品;否则,判定当前电测的电容出现极性反向缺陷,为次品。2.根据权利要求1所述的一种用于插件电路板电解电容极性缺陷检测的方法,其特征在于,步骤S1具体包括以下过程:在检测灯箱顶部和四周分别设置LED平面光源;在检测灯箱顶部设置工业相机以采集电容图片。3.根据权利要求1或2所述的一种用于插件电路板电解电容极性缺陷检测的方法,其特征在于,步骤S2具体包括:图片预处理;HOG特征提取;将处理结果输入训练好的机器学习检测模型完成极性判定。4.根据权利要求3所述的一种用于插件电路板电解电容极性缺陷检测的方法,其特征在于,所述图片预处理过程具体包括:灰度化处理、统一像素尺寸以及滤波去噪;所述HOG特征提取具体包括:以像素尺寸的胞元单位获取图像的梯度统计信息。5.根据权利要求1所述的一种用于插件电路板电解电容极性缺陷检测的方法,其特征在于,步骤S3具体包括:俯视图片预处理、图片从极坐标转换为笛卡尔...
【专利技术属性】
技术研发人员:徐昌国,沈永建,柳新霞,何家旺,蒋路茸,
申请(专利权)人:浙江达峰科技有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。