一种基于错位锥镜的原子重力梯度仪制造技术

技术编号:33724247 阅读:12 留言:0更新日期:2022-06-08 21:17
本实用新型专利技术提供一种基于错位锥镜的原子重力梯度仪,涉及原子干涉测量惯性技术领域,提供了一种在竖直方向上利用两个相同圆锥实现的原子囚禁,可实现竖直方向两个位置点的同时重力测量,进而构成小型化原子梯度仪。该小型化原子梯度仪利用相同的囚禁光、拉曼光对原子进行操控,保证上下两团原子干涉效果相同,更有利于共模抑制噪声,且该圆锥设计简单,仅将圆锥反射镜面均分8份,安装时上下两圆锥水平方向错位45度角。旨在解决现有设计方案中原子感受囚禁光斑及功率大小不同导致囚禁原子团大小以及原子数目不同的问题,同时降低了圆锥设计的复杂性。锥设计的复杂性。锥设计的复杂性。

【技术实现步骤摘要】
一种基于错位锥镜的原子重力梯度仪


[0001]本技术属于原子干涉测量惯性
,更具体地,涉及一种基于错位锥镜的原子重力梯度仪。

技术介绍

[0002]原子干涉仪因其高的测量精度在基础物理研究、地球物理、资源勘探、惯性导航等各个领域都具有重要运用。基于差分测量的原子干涉仪因其操作模式可抑制共模噪声源和系统效应,目前用于测量重力梯度,等效原理,探测引力波等。利用原子干涉仪差分技术而实现的重力梯度仪在重力场分布探测、地下结构探测、资源勘探等方面有着重要的应用。对于竖直方向上重力梯度测量,目前原子重力梯度仪主要由两种方式实现,一种是利用一个三维磁光阱技术囚禁原子团分别上抛两束原子团同时进行干涉或者两个三维磁光阱分别囚禁原子团上抛(或下落)同时进行干涉,另外一种是在竖直方向上分别放置两个角锥(或圆锥)利用单光束同时囚禁两团原子同时实现干涉,单光束角锥囚禁技术可大大地降低光学系统的体积、复杂性以及囚禁光校准的难度。对此,莫奎斯公司提出的重力梯度测量方案(公开号CN105026960A)是采用一个大角锥和一个小角锥分别实现两团原子的同时囚禁,进而实现重力梯度测量。但这样设计方案会导致上下角锥对囚禁光扩束及功率需求不同,同时也会导致囚禁原子团大小以及原子数目不同,进而影响干涉测量结果;而加州大学伯克利Holger Mueller小组设计的梯度仪方案是采用两个基于衍射光栅锥构成梯度仪(DOI:10.1109/INERTIAL48129.2020.9090014),这种衍射光栅锥需要复杂精细的刻蚀工艺。为此,我们设计了一种新的原子重力梯度仪原子囚禁方案,即采用两个相同圆锥(或角锥)通过错位45度角分别实现两团原子的同时囚禁,而且囚禁激光功率、原子团大小以及原子数目几乎相同,有助于重力梯度测量。

技术实现思路

[0003]针对现有技术的缺陷,本技术的目的在于提供一种基于错位锥镜的原子重力梯度仪,旨在解决现有技术中由于上下两个角锥设计导致的上下两个囚禁原子团大小以及原子数目不同的问题。
[0004]为实现上述目的,本技术提供了一种基于错位锥镜的原子重力梯度仪,包括:反射镜、1/4波片、第一圆锥、第二圆锥、第一磁场装置以及第二磁场装置;
[0005]所述第一圆锥置于第二圆锥正上方,所述1/4波片和反射镜依次置于第一圆锥正上方;
[0006]所述第一圆锥和第二圆锥的型号相同,且锥顶部分均被开孔,圆锥余下部分被均分成八等份,其中有四等份部分被移除,剩余四等份空间均匀排布;所述第一圆锥和第二圆锥竖直方向上下同轴放置,且第一圆锥和第二圆锥水平方向错位45度角,使第一圆锥的空心部分与第二圆锥的实心部分正对;所述第一圆锥和第二圆锥的开口方向均向下;
[0007]所述第一磁场装置用于为第一圆锥内部产生第一预设磁场梯度;
[0008]所述第二磁场装置用于为第二圆锥内部产生第二预设磁场梯度;
[0009]将向上传播的圆偏振囚禁光束分别45度角入射到第一圆锥锥面和第二圆锥锥面,以及穿过所述开孔后入射到1/4波片;
[0010]入射到第一圆锥四个锥面的囚禁光束经过反射后构成水平方向对射的第一组四束囚禁光束,入射到第二圆锥四个锥面的囚禁光束经过反射后构成水平方向对射的第二组四束囚禁光束;入射到1/4波片的囚禁光束经过所述反射镜反射后形成向下传播的圆偏振囚禁光束;
[0011]所述向上传播的圆偏振囚禁光束、向下传播的圆偏振囚禁光束与第一组四束囚禁光束结合所述第一预设磁场梯度在第一圆锥内部产生第一磁光阱,所述向上传播的圆偏振囚禁光束、向下传播的圆偏振囚禁光束与第二组四束囚禁光束结合所述第二预设磁场梯度在第二圆锥内部产生第二磁光阱;
[0012]利用所述第一磁光阱和第二磁光阱分别对上下两个原子团冷却囚禁,随后同时撤去囚禁光束和磁场作用,实现两个原子团同时自由下落,在两个原子团自由下落过程中作用相同的拉曼光脉冲,以同时测量上下两个圆锥处的重力加速度,并结合上下两个干涉仪重力测量点的距离和两个重力加速度值确定竖直方向的重力梯度。
[0013]在一个可选的示例中,所述竖直方向重力梯度Γ
zz
表示为:
[0014][0015]其中,l是上下两个干涉仪重力测量点的距离,即梯度仪的基线,g1为第一圆锥处测量的重力加速度值,g2为第二圆锥处测量的重力加速度值。
[0016]在一个可选的示例中,所述第一磁场装置包括:第一组亥姆霍兹线圈;
[0017]所述第一组亥姆霍兹线圈置于第一圆锥周围,以在第一圆锥内部产生第一预设磁场梯度。
[0018]在一个可选的示例中,所述第二磁场装置包括:第二组亥姆霍兹线圈;
[0019]所述第二组亥姆霍兹线圈置于第二圆锥周围,以在第二圆锥内部产生第二预设磁场梯度。
[0020]在一个可选的示例中,所述第一组亥姆霍兹线圈包括:第一亥姆霍兹线圈和第二亥姆霍兹线圈;
[0021]所述第一亥姆霍兹线圈和第二亥姆霍兹线圈分别置于第一圆锥的上方和下方,以在第一圆锥内部产生第一预设磁场梯度。
[0022]在一个可选的示例中,所述第二组亥姆霍兹线圈包括:第三亥姆霍兹线圈和第四亥姆霍兹线圈;
[0023]所述第三亥姆霍兹线圈和第四亥姆霍兹线圈分别置于第二圆锥的上方和下方,以在第二圆锥内部产生第二预设磁场梯度。
[0024]在一个可选的示例中,所述圆锥可以用角锥代替。
[0025]在一个可选的示例中,所述原子团在竖直方向的囚禁圆锥可扩展为N个,N大于2,例如N=3时,可测量竖直方向梯度的梯度;
[0026]将每个圆锥按90
°
/N角分成4N份,竖直方向安装圆锥时水平方向相对转动90
°
/N角,实现竖直方向上N团原子同时囚禁,进而实现竖直方向N个位置点的重力加速度同时测
量。
[0027]总体而言,通过本技术所构思的以上技术方案与现有技术相比,具有以下有益效果:
[0028]本技术提基于错位锥镜的原子重力梯度仪,原子重力梯度仪利用相同的囚禁光、拉曼光对原子进行操控,保证上下两团原子干涉效果相同,更有利于共模抑制噪声,且该圆锥设计简单,仅将圆锥反射镜面均分8份,安装时上下两圆锥错位45度角,解决现有设计方案中原子感受囚禁光斑及功率大小不同导致囚禁原子团大小以及原子数目不同的问题,同时降低了圆锥设计的复杂性。
附图说明
[0029]图1为本技术提出基于错位锥镜的小型化原子重力梯度仪系统示意图;
[0030]图2为本技术提出的小型化原子重力梯度仪圆锥及角锥设计结构示意图;
[0031]图3为本技术提出的竖直方向重力梯度仪测量原理示意图;
[0032]在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:100为反射镜;101为1/4波片;102和113为上圆锥所构成磁光阱的亥姆霍兹线圈;103

106为上圆锥构成的反射镜;107

本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种基于错位锥镜的原子重力梯度仪,其特征在于,包括:反射镜、1/4波片、第一圆锥、第二圆锥、第一磁场装置以及第二磁场装置;所述第一圆锥置于第二圆锥正上方,所述1/4波片和反射镜依次置于第一圆锥正上方;所述第一圆锥和第二圆锥的型号相同,且锥顶部分均被开孔,圆锥余下部分被均分成八等份,其中有四等份部分被移除,剩余四等份空间均匀排布;所述第一圆锥和第二圆锥竖直方向上下同轴放置,且第一圆锥和第二圆锥水平方向错位45度角,使第一圆锥的空心部分与第二圆锥的实心部分正对;所述第一圆锥和第二圆锥的开口方向均向下;所述第一磁场装置用于为第一圆锥内部产生第一预设磁场梯度;所述第二磁场装置用于为第二圆锥内部产生第二预设磁场梯度;将向上传播的圆偏振囚禁光束分别45度角入射到第一圆锥锥面和第二圆锥锥面,以及穿过所述开孔后入射到1/4波片;入射到第一圆锥四个锥面的囚禁光束经过反射后构成水平方向对射的第一组四束囚禁光束,入射到第二圆锥四个锥面的囚禁光束经过反射后构成水平方向对射的第二组四束囚禁光束;入射到1/4波片的囚禁光束经过所述反射镜反射后形成向下传播的圆偏振囚禁光束;所述向上传播的圆偏振囚禁光束、向下传播的圆偏振囚禁光束与第一组四束囚禁光束结合所述第一预设磁场梯度在第一圆锥内部产生第一磁光阱,所述向上传播的圆偏振囚禁光束、向下传播的圆偏振囚禁光束与第二组四束囚禁光束结合所述第二预设磁场梯度在第二圆锥内部产生第二磁光阱;利用所述第一磁光阱和第二磁光阱分别对上下两个原子团冷却囚禁,随后同时撤去囚禁光束和磁场作用,实现两个原子团同时自由下落,在两个原子团自由下落过程中作用相同的拉曼光脉冲,以同时测量上下两个圆锥处的重力加速度,并结合上下两个干涉仪重力测量点的距离和两个重力加速度值确定竖直方向的重力梯度。2.根...

【专利技术属性】
技术研发人员:周敏康胡忠坤程源徐文杰邓小兵
申请(专利权)人:华中科技大学
类型:新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1