一种易用高效AI识别算法制造技术

技术编号:33631882 阅读:29 留言:0更新日期:2022-06-02 01:37
本发明专利技术涉及图像识别技术领域,具体为一种易用高效AI识别算法,包括处理系统以及识别算法,所述处理系统由图像采集设备、图像处理器、信号传输器以及数据库组成,所述图像处理器分别电性连接于图像采集设备、数据库和信号传输器。本发明专利技术中通过图像处理器将图像采集器采集的图片数据与数据库中的设备缺陷模型比较,可识别出设备外观缺陷,识别出的外观缺陷通过信号传输器传递至监控后台,方便对设备外观缺陷的检测以及快速采用应对措施,图像处理器将图像采集器采集的图片数据与数据库中的人员异常违规行为模型比较,可识别出工人的违规动作以及操作,提升了工厂对工人的安全管理,避免出现操作不当造成人员伤亡的安全事故。出现操作不当造成人员伤亡的安全事故。出现操作不当造成人员伤亡的安全事故。

【技术实现步骤摘要】
一种易用高效AI识别算法


[0001]本专利技术涉及图像识别
,具体为一种易用高效AI识别算法。

技术介绍

[0002]安全生产是保护劳动者的安全、健康和国家财产,促进社会生产力发展的基本保证,因此,做好安全生产工作具有重要的意义。工厂中由于多采用大量的机械设备进行生产,安全成为至关重要的话题,因此每个工厂无论是在生产加工时的动态环境下,还是设备止停情况下都需要做到以安全得到保证为前提,因此工厂内部各个角落里都设置有监控摄像头,可传统的监控摄像头只能拍摄并记录工厂内部的时时环境画面,并不能对不利于工厂安全生产的不稳定因素进行识别判定,进而不利于工厂不安全因素的杜绝以及防控。

技术实现思路

[0003]本专利技术的目的在于提供一种多项功能的易用高效AI识别算法。
[0004]为实现上述目的,本专利技术提供如下技术方案:一种易用高效AI识别算法,包括处理系统以及识别算法,所述处理系统由图像采集设备、图像处理器、信号传输器以及数据库组成,所述图像处理器分别电性连接于图像采集设备、数据库和信号传输器,且信号传输器信号连接于监控后台,所述识别算法包括以下步骤:
[0005]S1:建立特征,包括设备外观缺陷模型建立和人员异常违规动作模型建立;
[0006]S2:图像获取,由图像采集设备对识别区域的具体情况进行时时拍摄,并将拍摄画面传递至图像处理器进行处理;
[0007]S3:图像处理,图像处理器对由图像采集设备采集到的图像进行裁剪、旋转、翻转及缩放等预处理,并得到相应的数据;
[0008]S4:分析识别,通过预处理图像数据与数据库中的模型数据进行比对,确定出设备外观缺陷以及人员违规动作的图片,通过环境识别系统得出工厂内部环境情况,通过设备状态识别系统得出设备运转情况;
[0009]S5:结果处理,识别得出的不利于安全生产的数据通过信号传输器传递至监控后台,方便监控人员的管理。
[0010]由上述方案可见,本装置通过图像处理器将图像采集器采集的图片数据与数据库中的设备缺陷模型比较,可识别出设备外观缺陷,并将识别出的外观缺陷通过信号传输器传递至监控后台,方便对设备外观缺陷的检测以及快速采用应对措施,通过图像处理器将图像采集器采集的图片数据与数据库中的人员异常违规行为模型比较,可识别出工人的违规动作以及操作,进而提升了工厂对工人的安全管理,避免出现操作不当造成人员伤亡的安全事故,通过环境识别系统可对工厂内部环境进行时时检测,可识别出火情的出现,进而方便快速灭火,避免因发生火灾造成过大的损失,通过设备状态识别可识别出设备的相应工作状态,进而对设备的工作状况进行及时掌握,方便对设备的检修。
[0011]优选地,S1中的设备外观缺陷模型建立包括以下子步骤:
[0012]通过图像采集设备采集现有设备的外观缺陷的多组图像,并对存在具体缺陷的位置处进行位置校准;
[0013]利用图像处理器结合现有的图像转换GAN模型将采集到的设备外观缺陷图像进行再生成,得到设备缺陷的样本;
[0014]结合设备缺陷的样本,对样本进行概率统计,将概率低于百分之五的样本剔除,再利用基于卷积神经网络技术构建出设备外观缺陷的模型;
[0015]由所述图像处理器将构建的设备外观缺陷的模型传输至数据库内部进行存储。
[0016]由上述方案可见,通过图像采集设备采集现有设备的外观缺陷的多组图像,并对存在具体缺陷的位置处进行位置校准,再利用图像处理器结合现有的图像转换GAN模型将采集到的设备外观缺陷图像进行再生成,得到设备缺陷的样本,结合设备缺陷的样本,利用基于卷积神经网络技术构建出设备外观缺陷的模型,由所述图像处理器将构建的设备外观缺陷的模型传输至数据库内部进行存储,方便设备外观缺陷的对比识别。
[0017]优选地,S1中的人员异常违规动作模型建立包括以下子步骤:
[0018]通过使用Kinect传感器对操作人员采用违规操作时的人体三维骨骼点数据进行采集获取,并通过滤波处理模组对人体三维骨骼点数据进行均值滤波处理;
[0019]采用聚类算法对均值滤波处理后的人体三维骨骼点数据进行训练并验证得到人员违规动作的模型;
[0020]将人员违规动作模型传输至数据库中进行存储。
[0021]由上述方案可见,通过使用Kinect传感器对操作人员采用违规操作时的人体三维骨骼点数据进行采集获取,并通过滤波处理模组对人体三维骨骼点数据进行均值滤波处理,采用聚类算法对均值滤波处理后的人体三维骨骼点数据进行训练并验证得到人员违规动作的模型,将人员违规动作模型传输至数据库中进行存储,方便人员违规动作的对比识别。
[0022]优选地,S4中的设备状态识别系统由表针识别与设备指示灯识别组成,所述表针识别包括以下子步骤:
[0023]由所述图像采集设备拍摄待识别区域内的指针表盘轮廓并传递至所述图像处理器内部进行图像预处理;
[0024]经图像处理器提取出的特征数据与数据库中的标准值进行比较,识别出表针指示位置是否出现异常,若出现异常,则由图像处理器通过信号传输器想监控后台发出相应信号;
[0025]所述设备指示灯识别包括以下子步骤:
[0026]由所述图像采集设备拍摄设备指示区的图像并传递至图像处理器内部进行图像数据预处理;
[0027]以图像数据预处理中的设备指示灯的局部图像作为识别区域,并提取出指示灯亮起的颜色,并经过校准后与数据库中的颜色模型进行比对识别。
[0028]由上述方案可见,由所述图像采集设备拍摄待识别区域内的指针表盘轮廓并传递至所述图像处理器内部进行图像预处理,经图像处理器提取出的特征数据与数据库中的标准值进行比较,识别出表针指示位置是否出现异常,若出现异常,则由图像处理器通过信号传输器想监控后台发出相应信号,由所述图像采集设备拍摄设备指示区的图像并传递至图
像处理器内部进行图像数据预处理,以图像数据预处理中的设备指示灯的局部图像作为识别区域,并提取出指示灯亮起的颜色,并经过校准后与数据库中的颜色模型进行比对识别。
[0029]优选地,S4中的环境识别系统由烟雾传感器、温度传感器、热成像模块以及数据处理模块组成,且烟雾传感器、温度传感器以及热成像模块均电性连接于输出处理器,且输出处理器与监控后台电信号连接,所述烟雾传感器、温度传感器以及热成像模块均匀分布安装在现场的待识别检测区域。
[0030]由上述方案可见,通过烟雾传感器、温度传感器的配合使用,可对工厂内部环境进行时时检测,当发生火情时,烟雾传感器与温度传感器检测的数据传递至数据处理分析,可识别出火情的出现,同时通过热成像模块分析得出发生火情的具体位置,进而方便快速灭火,避免因发生火灾造成过大的损失。
[0031]优选地,所述图像采集设备为分布于工厂内部的定点监控摄像头和移动式监控摄像头,且通过外界电源为定点监控摄像头和移动式监控摄像头进行供电。
[0032]由上述方案可见,方便对工厂内部进行全局监测,通过外界电源为定点本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种易用高效AI识别算法,包括处理系统以及识别算法,其特征在于:所述处理系统由图像采集设备、图像处理器、信号传输器以及数据库组成,所述图像处理器分别电性连接于图像采集设备、数据库和信号传输器,且信号传输器信号连接于监控后台,所述识别算法包括以下步骤:S1:建立特征,包括设备外观缺陷模型建立和人员异常违规动作模型建立;S2:图像获取,由图像采集设备对识别区域的具体情况进行时时拍摄,并将拍摄画面传递至图像处理器进行处理;S3:图像处理,图像处理器对由图像采集设备采集到的图像进行裁剪、旋转、翻转及缩放等预处理,并得到相应的数据;S4:分析识别,通过预处理图像数据与数据库中的模型数据进行比对,确定出设备外观缺陷以及人员违规动作的图片,通过环境识别系统得出工厂内部环境情况,通过设备状态识别系统得出设备运转情况;S5:结果处理,识别得出的不利于安全生产的数据通过信号传输器传递至监控后台,方便监控人员的管理。2.根据权利要求1所述的一种易用高效AI识别算法,其特征在于:S1中的设备外观缺陷模型建立包括以下子步骤:通过图像采集设备采集现有设备的外观缺陷的多组图像,并对存在具体缺陷的位置处进行位置校准;利用图像处理器结合现有的图像转换GAN模型将采集到的设备外观缺陷图像进行再生成,得到设备缺陷的样本;结合设备缺陷的样本,对样本进行概率统计,将概率低于百分之五的样本剔除,再利用基于卷积神经网络技术构建出设备外观缺陷的模型;由所述图像处理器将构建的设备外观缺陷的模型传输至数据库内部进行存储。3.根据权利要求1所述的一种易用高效AI识别算法,其特征在于:S1中的人员异常违规动作模型建立包括以下子步骤:通过使用Kinect传感器对操作人员采用违规操作时的人体三维骨骼点数据进行采集获取,并通过滤波处理模组对人体三维骨骼点数据进行均值滤波处理;采用聚类算法对均值滤波处理后的人体三维骨骼点数据进...

【专利技术属性】
技术研发人员:李群肖永平
申请(专利权)人:珠海德茵电气有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1