低塑性材料室温应力增塑成形工艺制造技术

技术编号:33348769 阅读:31 留言:0更新日期:2022-05-08 09:49
本发明专利技术涉及一种低塑性材料室温应力增塑成形工艺,包括以下步骤:S1、将坯料放置于成形模具的下模模腔内;S2、下模放置于耐高压容框中,进出液口连接液体增压器,由增压器往容框内部注满液体,并加压到设定压力;S3、将整套装置放置在压力机工作台上,启动压力机,压力机滑块往下运动带动成形模具的上模下行,使放置在模具中的低塑性坯料变形;变形过程中,容框中液体通过进出液口排出,使液体压力保持为设定值,从而使液体以高压力紧紧包裹坯料,在坯料变形区产生大的静水压应力,避免低塑性材料变形过程中产生破裂;S4、成形结束后,开模获得成形的零件。本发明专利技术能大幅提高低塑性材料的变形能力,从而突破低塑性材料室温塑性成形难题,同时具有成形零件性能好、成形效率高、材料利用率高、工作环境好等优点。工作环境好等优点。工作环境好等优点。

【技术实现步骤摘要】
低塑性材料室温应力增塑成形工艺


[0001]本专利技术涉及锻压成形领域,更具体地说,涉及一种低塑性材料室温应力增塑成形工艺。

技术介绍

[0002]轻量化为未来制造业的重要发展趋势。一辆汽车重量每降低10%,则油耗可以下降8%,排放下降4%。对于航空发动机而言,新一代航天飞行器正向高马赫数、高承载、超长航时和超远航程方向快速发展,提高航空发动机的推重比是满足新一代空天飞行器发展要求的关键,而推重比与重量成反比,可以通过减重予以直接提高。采用轻量化材料是实现轻量化的主要途径,如TiAl合金、钛合金、镁合金、高强度铝合金等。但是对于这些轻量化材料,其塑性都较低。以TiAl合金为例,其密度约为4.2g/cm3,但是多晶的TiAl合金室温延伸率约为2%,单晶的TiAl合金室温延伸率也仅为6%左右。
[0003]对于这些低塑性轻量化合金零件的成形,一般采用通过加热提高材料塑性变形能力的热成形技术。热加工技术需要加热,一方面会使零件表面氧化,带来后续去氧化皮等加工工序,同时浪费能量,恶化加工环境;另一方面,有些材料还不能采用热成形技术进行加工。如单晶TiAl合金,当它在1100℃以上进行热成形时,单晶材料容易转变为多晶材料,从而丧失单晶TiAl合金优异力学性能。如果能够攻克低塑性轻量化合金材料室温变形容易破裂失效的难题,使其在室温下变形,这将会是塑性成形制造领域的重大突破。

技术实现思路

[0004]本专利技术要解决的技术问题在于,提供一种低塑性材料室温应力增塑成形工艺,能够大幅提高坯料的变形能力,从而实现低塑性材料的室温成形。
[0005]本专利技术解决其技术问题所采用的技术方案是:一种低塑性材料室温应力增塑成形工艺,用于延伸率低于15%的低塑性材料成形,成形工艺包括以下步骤:
[0006]S1、将低塑性材料制成的坯料放置于成形模具的下模模腔内;
[0007]S2、下模放置于耐高压容框中,容框侧面设有进出液口,进出液口连接液体增压器,由增压器往容框内部注满液体,并加压到设定压力;
[0008]S3、将整套装置放置在压力机工作台上,启动压力机,压力机滑块往下运动带动成形模具的上模下行,使放置在模具中的低塑性坯料变形;变形过程中,容框中液体通过进出液口排出,利用增压器溢流阀使液体压力始终保持为设定值;
[0009]S4、成形结束后,开模获得成形的零件。
[0010]按上述方案,容框中的液体压力根据成形零件材料、成形零件复杂程度而设定,液体压力尽量取小值,在成形过程中零件不产生破裂失效即可。
[0011]实施本专利技术的低塑性材料室温应力增塑成形工艺,具有以下有益效果:
[0012]在高压的液体压力中,成形坯料始终处于静水压应力状态。金属塑性变形过程中裂纹的萌生和扩展与其承受的应力状态相关。根据塑性变形理论,任意点的应力状态可以
分解为应力偏张量和应力球张量。应力球张量三个分量值相同,此值即为静水应力值σm。在塑性变形过程中,如果材料处于静水压应力状态(即三向受压,σm为负值),则能抑制成形过程中裂纹的萌生与扩展,从而极大地提高材料塑性变形能力。本专利技术利用超高压液体在变形坯料中产生静水压应力,大幅提高材料塑性变形能力,从而实现低塑性材料的室温塑性成形。本专利技术突破低塑性材料室温塑性成形难题,具有成形零件性能好、成形效率高、材料利用率高、工作环境好等优点。
附图说明
[0013]下面将结合附图及实施例对本专利技术作进一步说明,附图中:
[0014]图1a是实施例1应力增塑镦粗成形装置原理图;
[0015]图1b是实施例1中的试验装置实物图;
[0016]图2是TC4钛合金应力增塑镦粗变形情况示意图;
[0017]图3是实施例2中单晶TiAl合金室温应力增塑锻造成形前的示意图;
[0018]图4是实施例2中单晶TiAl合金室温应力增塑锻造变形后的示意图;
[0019]图5是室温应力增塑成形的单晶TiAl合金航发叶片锻件示意图。
具体实施方式
[0020]为了对本专利技术的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本专利技术的具体实施方式。
[0021]实施例1:TC4钛合金室温应力增塑镦粗成形。
[0022]应力增塑镦粗成形装置原理图和试验装置实物图分别如图1a和图1b所示。成形材料为φ20
×
20mm的TC4钛合金,试验液体压力为170MPa。通过超高压管将增压器与镦粗模具系统容框上的进出液口相连接。试验开始时,将试样放于垫块上,将上模压入容框,将整个装置放于压力机工作台上。此时,启动增压器,将容框中注入液体,并加压到设定压力。随后,启动压力机滑块下行,使上模向下运动镦粗试样,当达到设定的镦粗压缩变形量时,滑块停止运动。在变形过程中,容框中液体可通过进出液口排出,但压力通过增压器的定压溢流阀保持在设定值。最后,增压器泄压,滑块上行,开模取件。
[0023]试样镦粗变形情况如图2所示,具体实验数据统计在表1中。从试验结果可知,在不施加高压液体情况下,压下量为7.2mm时破裂(b);而在施加170MPa高压液体情况下,压下量达到7.3mm时试样没有破裂(c),直到压下量为8.5mm时,试样才产生破裂(d)。因此,在170MPa高压液体作用下,TC4钛合金的镦粗压缩率从35.1%提高到42.5%,试验证实了低塑性材料在高压液体作用下塑性变形能力能够得到提高。
[0024]表1应力增塑镦粗变形试验结果
[0025][0026]实施例2:单晶TiAl合金室温应力增塑锻造成形。
[0027]采用单晶TiAl合金棒料制作的航空发动机叶片坯料,按照锻造成形工艺与模具设计方法设计制作航空发动机叶片锻造成形模具的上下模,将锻造成形模具放置于容框中。将整个装置放置于压力机上,启动液压增压装置,往容框中注入液体,并使容框中的液体压力达到1500MPa。然后启动压力机,压力机滑块下行,带动成形模具上模下行,从而使放置在模具中的低塑性坯料变形。在成形过程中,由于上模下行,容框中的液体通过进出液口排出,但始终保持容腔中的压力为1500MPa不变。当滑块下压到设定距离后,停止运动,成形结束。然后,增压器泄压,滑块上行,排出容腔中的油液,开模取件,获得所需的零件。如图5所示,从图中可以看出航发叶片锻件型腔填充饱满,无破裂,成形质量好。
[0028]上面结合附图对本专利技术的实施例进行了描述,但是本专利技术并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本专利技术的启示下,在不脱离本专利技术宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本专利技术的保护之内。
本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种低塑性材料室温应力增塑成形工艺,其特征在于,用于延伸率低于15%的低塑性材料成形,成形工艺包括以下步骤:S1、将低塑性材料制成的坯料放置于成形模具的下模模腔内;S2、下模放置于耐高压容框中,容框侧面设有进出液口,进出液口连接液体增压器,由增压器往容框内部注满液体,并加压到设定压力;S3、将整套装置放置在压力机工作台上,启动压力机,压力机滑块往下运动带动成形...

【专利技术属性】
技术研发人员:刘艳雄华林汪永斌张涵纪开盛
申请(专利权)人:武汉理工大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1