【技术实现步骤摘要】
一种双模式异型尖角磁场磁控电弧控制方法及装置
[0001]本专利技术涉及磁控电弧焊接
,具体涉及一种双模式异型尖角磁场磁控电弧控制方法及装置,通过产生非轴对称分布异型尖角磁场对电弧进行非轴对称拉伸与压缩,以调控电弧分布及熔池流场分布,进而调控焊缝成型与焊缝质量。
技术介绍
[0002]磁控焊接技术是利用外加磁场对焊接过程进行控制,达到改变电弧形态及其特性、控制熔滴过渡过程、调控熔池流动、优化焊缝成型、改善焊接质量、提高焊接效率的一种先进焊接技术。由于实际焊接生产工况的不同,电弧在不同类型的磁场作用下产生偏转、摆动、旋转、压缩及拉伸等现象,从而获得不同的焊接调控效果。
[0003]一般而言,电弧在横向磁场的作用下发生偏转,通过交替改变横向磁场分布,电弧可以产生摆动或旋转现象,从而能够调节电弧的形态和电弧特性,但仍存在一些问题;除了较高的交变频率,横向磁场对电弧的压缩效应很少,电弧的能量密度和穿透能力较低,应用范围受到限制。
[0004]电弧在纵向磁场的作用下发生偏转与旋转现象,电弧等离子体的旋转运动使电弧弧柱区受到压缩,电弧的能量密度和穿透能力增加;交变纵向磁场具有更佳的电弧压缩效果,交变激磁频率越高,电弧收缩越强,电弧集中度和电弧指向性更好。
[0005]理论和实验研究表明,尖角磁场对电弧的压缩能力比纵向磁场更强,电弧在尖角磁场的作用下被压缩成能量密度更高的椭圆形,国内外学者对此进行了很多研究。赵彭生等人将双尖角磁场用于等离子弧焊接,电弧截面缩小,电流密度、电弧中心压强明显提高,实现了更 ...
【技术保护点】
【技术特征摘要】
1.一种双模式异型尖角磁场磁控电弧控制方法及装置,其特征在于:该方法采用的装置包括沿焊枪中心均匀圆周分布的激励线圈(1)、(2)、(3)、(4),励磁电源(5)、(6)、(7)、(8),磁控电弧控制器(9);该方法采用四个磁极极性相邻切换的激励线圈(1)、(2)、(3)、(4)形成尖角磁场,通过调节单个或多个激励线圈的励磁电流产生非轴对称分布的异型尖角磁场,通过改变异型尖角磁场分布来调节焊接电弧的非轴对称压缩与拉伸效应,从而调控电弧对焊接熔池的搅拌作用和熔池流场分布,进而调控焊缝成型和焊缝质量;所述异型尖角磁场磁控电弧控制方法提供两种工作模式:模式一为交变模式,模式二为非交变模式,分别如下:工作模式一:激励线圈(1)、(2)、(3)、(4)以磁极极性为N
‑
S
‑
N
‑
S与S
‑
N
‑
S
‑
N的分布在周期为T的时间内交替转变,焊接方向沿着激励线圈(1)与激励线圈(3)连线方向;以焊接电流正极性为例,该模式具体工作过程是:在0
‑
T/2时,激励线圈(1)、(2)、(3)、(4)分别通入I1、
‑
I2、I2、
‑
I2的励磁电流(其中I1>I2)并且在焊接电弧工作区域形成磁极极性为N
‑
S
‑
N
‑
S的非轴对称分布的异型尖角磁场,激励线圈(1)与(4)之间磁场分布对焊接电弧的拉伸效应大于激励线圈(2)与(3)之间磁场分布对焊接电弧的拉伸效应,激励线圈(1)与(2)之间磁场分布对焊接电弧的压缩效应大于激励线圈(3)与(4)之间磁场分布对焊接电弧的压缩效应,此时的非轴对称分布异型尖角磁场驱使焊接电弧分布及熔池流场分布更倾向于焊接方向的左后方;在T/2
‑
T时,激励线圈(1)、(2)、(3)、(4)分别通入
‑
I1、I2、
‑
I2、I2的励磁电流并形成磁极极性为S
‑
N
‑
S
‑
N的非轴对称分布异型尖角磁场,激励线圈(1)与(4)之间磁场分布对焊接电弧的压缩效应大于激励线圈(2)与(3)之间磁场分布对焊接电弧的压缩效应,激励线圈(1)与(2)之间磁场分布对焊接电弧的拉伸效应大于激励线圈(3)...
【专利技术属性】
技术研发人员:尹力,秦梦玉,叶欢,裴晨旭,程浩冉,李江南,谷龙冰,
申请(专利权)人:湘潭大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。