一种基于网络点评语义分析的寒地城市景区季节综合评价方法和装置制造方法及图纸

技术编号:33084021 阅读:32 留言:0更新日期:2022-04-15 10:43
本发明专利技术公开了一种基于网络点评语义分析的寒地城市景区季节综合评价方法和装置。步骤1:采集网络网站点评数据;步骤2:将步骤1的点评数据进行预处理;步骤3:基于步骤2预处理后的点评数据的词组确定评价指标;步骤4:基于步骤1预处理后的点评数据词组结合词组前后的分词进行语义分析;步骤5:基于步骤3的确定评价指标与步骤4的语义分析进行综合评价。本发明专利技术旨在通过大量数据更为高效、客观地获得评价结果。果。果。

【技术实现步骤摘要】
一种基于网络点评语义分析的寒地城市景区季节综合评价方法和装置


[0001]本专利技术属于的
;具体涉及一种基于网络点评语义分析的寒地城市景区季节综合评价方法、装置、计算机设备及存储介质。

技术介绍

[0002]随着旅游服务日渐发达,人们对景区品质的要求逐渐提高,越来越流行将景区体验的点评发布到点评网站上供他人参考。对寒地城市景区而言,在不同季节气候条件下,使用者空间的感知不同,评价体系的要素及其权重均有所不同,传统评价方式多依赖问卷访谈,且获得全季节数据调研周期持续时间长、成本高,应用网络点评可以较为快速地获得全季节数据,并获得人们对于寒地城市景区的关注点及其评价倾向,对寒地景区进行综合评分,进而加强景区建设,提高使用者满意度。

技术实现思路

[0003]本专利技术提供了一种基于网络点评语义分析的寒地城市景区季节综合评价方法,旨在通过大量数据更为高效、客观地获得评价结果。
[0004]本专利技术提供了一种基于网络点评语义分析的寒地城市景区季节综合评价装置,旨在通过大量数据更为高效、客观地获得评价结果。
[0005]本专利技术提供了一种计算机设备。
[0006]本专利技术提供了一种非临时性计算机可读存储介质。
[0007]本专利技术通过以下技术方案实现:
[0008]一种基于网络点评语义分析的寒地城市景区季节综合评价方法,所述综合评价方法包括以下步骤:
[0009]步骤1:采集网络网站点评数据;
[0010]步骤2:将步骤1的点评数据进行预处理;
[0011]步骤3:基于步骤2预处理后的点评数据的词组确定评价指标;
[0012]步骤4:基于步骤1预处理后的点评数据词组结合词组前后的分词进行语义分析;
[0013]步骤5:基于步骤3的确定评价指标与步骤4的语义分析进行综合评价。
[0014]进一步的,所述步骤1的网络网站点评数据先进行筛选,筛选出夏季的点评文本与冬季的点评文本。
[0015]进一步的,所述步骤2的预处理包括剔除无效文本、去除无效成分及替换标点符号。
[0016]进一步的,所述步骤3确定评价指标具体包括以下步骤:
[0017]步骤X3.1:基于处理后的夏季的点评数据进行词频统计;
[0018]步骤X3.2:基于步骤3.1统计的词频应用TF

IDF进行关键词提取;
[0019]步骤X3.3:基于步骤3.2提取的关键词针对不同研究区域筛选出使用者较为重视
的关注要素并确定其权重;
[0020]步骤X3.4:基于步骤3.3的词组权重通过k

means聚类分析结合相关历史研究确定评价指标体系。
[0021]进一步的,所述步骤3确定评价指标具体包括以下步骤:
[0022]步骤D3.1:基于处理后的冬季的点评数据进行词频统计;
[0023]步骤D3.2:基于步骤3.1统计的词频应用TF

IDF进行关键词提取;
[0024]步骤D3.3:基于步骤3.2提取的关键词针对不同研究区域筛选出使用者较为重视的关注要素并确定其权重;
[0025]步骤D3.4:基于步骤3.3的词组权重通过k

means聚类分析结合相关历史研究确定评价指标体系。
[0026]进一步的,所述步骤4的综合评价具体包括以下步骤:
[0027]步骤4.1:将步骤1预处理后的点评数据提取词组,并判断该词组是否属于评价指标体系,如果不属于评价体系,则进行步骤4.2;如果属于评价体系,则进行步骤4.3;
[0028]步骤4.2:进行人工校正,人工判断是否属于评价体系,如果属于则进行步骤4.3,如果不属于则不做处理;
[0029]步骤4.3:进行关键词归类;
[0030]步骤4.4:基于步骤4.3的关键词归类,将关键词及其前后的分词均与情感词典匹配进行情感词典的匹配;
[0031]步骤4.5:将步骤4.4匹配后的关键词及其前后的分词根据词性类别与程度副词的修饰,再判断语义情感;
[0032]步骤4.6:将步骤4.5的语义情感进行打分,将分数与它修饰的关键词权重相乘;
[0033]步骤4.7:夏季数据与夏季评价指标体系相对应,冬季数据与冬季评价指标体系相对应,从而获得两个季节的语义打分。
[0034]通过人工智能识别为主,辅助人工判断归类的方式将预处理后的点评数据进行归类;
[0035]将关键词及其前后的分词均与情感词典匹配,根据词性类别与程度副词的修饰,在判断语义情感后,语义情感打分和它修饰的关键词权重相乘。夏季数据与夏季评价指标体系相对应,冬季数据与冬季评价指标体系相对应,从而获得两个季节的语义打分。
[0036]夏季与冬季的语义打分相加获得季节综合总分,其中,各类评价可根据权重与语义打分得出分类得分,从而指导运营方或设计方清晰得知不同季节中得分高及得分低的评价要素。
[0037]进一步的,所述步骤4.4中情感词典包括积极情感词表、消极情感词表、否定词表及程度副词表。
[0038]一种基于网络点评语义分析的寒地城市景区季节综合评价装置,所述综合评价装置包括
[0039]数据采集模块,用于采集网络网站点评数据;
[0040]数据预处理模块,用于将点评数据进行预处理;
[0041]语义分析分析模块,用于将点评数据词组结合词组前后的分词进行语义分析;
[0042]综合评价模块,用于将点评数据进行综合评价。
[0043]一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器质性所述计算机程序时实现权利要求1

7中任一项所述方法的步骤。
[0044]一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,实现权利要求1

7中任一项所述方法的步骤。
[0045]本专利技术的有益效果是:
[0046]本专利技术相较传统问卷获取方式,节约人力且可获取大量数据,评价结果更为客观真实。
[0047]点评数据用来评估区域或空间的使用者反馈和满意程度是可以比传统问卷或问询的方法更加轻易获取几十倍或上百倍的线上数据的,大大提升了结论的可信度,也减少了研究者的工作量。线上数据的直接获取提供了公众主动评价的视角,较少的受到研究者主观思维的干扰,短小的评价文本更准确地反映出公众的直观感知与关注重点
[0048]本专利技术对寒地城市空间评价在综合不同季节评分过程中,线上评价时间连续性更强,时间成本更低。
[0049]传统调研观测方法只能在一定的时间内获得评价数据,很难长时间观测并获取,对于寒地城市中需获取不同季节条件的数据的城市空间而言,相较于线上点评数据的定时爬取,线下调研成本更高而准确性更弱。
[0050]本专利技术根据评价指标的权重与语义分析结合得出的评价结果更精确。
[0051]一是传统语本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种基于网络点评语义分析的寒地城市景区季节综合评价方法,其特征在于,所述综合评价方法包括以下步骤:步骤1:采集网络网站点评数据;步骤2:将步骤1的点评数据进行预处理;步骤3:基于步骤2预处理后的点评数据的词组确定评价指标;步骤4:基于步骤1预处理后的点评数据词组结合词组前后的分词进行语义分析;步骤5:基于步骤3的确定评价指标与步骤4的语义分析进行综合评价。2.根据权利要求1所述一种基于网络点评语义分析的寒地城市景区季节综合评价方法,其特征在于,所述步骤1的网络网站点评数据先进行筛选,筛选出夏季的点评文本与冬季的点评文本。3.根据权利要求1所述一种基于网络点评语义分析的寒地城市景区季节综合评价方法,其特征在于,所述步骤2的预处理包括剔除无效文本、去除无效成分及替换标点符号。4.根据权利要求1所述一种基于网络点评语义分析的寒地城市景区季节综合评价方法,其特征在于,所述步骤3确定评价指标具体包括以下步骤:步骤X3.1:基于处理后的夏季的点评数据进行词频统计;步骤X3.2:基于步骤3.1统计的词频应用TF

IDF进行关键词提取;步骤X3.3:基于步骤3.2提取的关键词针对不同研究区域筛选出使用者较为重视的关注要素并确定其权重;步骤X3.4:基于步骤3.3的词组权重通过k

means聚类分析结合相关历史研究确定评价指标体系。5.根据权利要求1所述一种基于网络点评语义分析的寒地城市景区季节综合评价方法,其特征在于,所述步骤3确定评价指标具体包括以下步骤:步骤D3.1:基于处理后的冬季的点评数据进行词频统计;步骤D3.2:基于步骤3.1统计的词频应用TF

IDF进行关键词提取;步骤D3.3:基于步骤3.2提取的关键词针对不同研究区域筛选出使用者较为重视的关注要素并确定其权重;步骤D3.4:基于步骤3.3的词组权重通过k

means聚类分析结合相关历史研究确定评价指标体系。6.根据权利要求4或5所述一种基于网络点评语义分析的寒地城市景区季节综合评价方法,其特征在于,所述步骤4的综合评价具体包括以下步骤:步骤4.1:将步骤1预处理后的点评数据提取词组,并判断该词...

【专利技术属性】
技术研发人员:梅洪元孟雪叶洋安文李书颀单杰周小璐
申请(专利权)人:哈尔滨工业大学建筑设计研究院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1