多波束天线制造技术

技术编号:3266434 阅读:240 留言:0更新日期:2012-04-11 18:40
一种接收来自多个卫星的微波的多波束天线,当经转动机构17转动变频器14时,在0至20度范围内调节两个一次辐射器15a和15b相对于与地面平行的轴的设置倾角。可在0到20度的范围调节由一次轴射器15a和15b的探测器产生的接收极化角,同时保持卫星之间的预定极化角度差。因此,通过经转动机构17转动变频器14同时容易调节接收来自两个卫星的信号的一次辐射器15a和15b的设置倾角和一次辐射器15a和15b内的接收极化角。(*该技术在2017年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及一种用于接收来自多个对地静止卫星的微波的多波束天线。近来,已经发射许多对地静止广播卫星和对地静止通信卫星。这就加大了通过使用单个天线接收来自,例如,两个相邻卫星的微波并且有选择地使用所接收的微波之一的需求。通常,配置接收来自多个卫星的微波的多波束天线,以便通过单抛物面反射器反射并聚焦来自多个卫星的微波并且被聚焦的卫星信号分别进入不同的一次辐射器。喇叭型一次辐射器(或馈电喇叭)被用作一次辐射器。当例如接收两个卫星微波时,通过一个支架支撑两个喇叭型一次辐射器,以便将它们设置在抛物面反射器的反射和聚焦位置。卫星对地面的仰角互不相同。另外,仰角的角度差随接收区域而变化。因此,对于每个接收区,必须调整一次辐射器的喇叭形构造相对于与地面平行的轴的倾斜。下文中,将一次辐射器的喇叭形构造相对于与地面平行的轴的倾斜称为倾角。在所接收的卫星信号被线性极化的情况下,每个入射微波相对于地面的倾斜随卫星和接收区而改变。因此,对于每个接收区,必须调整每个一次辐射器的接收极化角。因此,当要调整常规的用于线性极化波的多波束天线的方向时,必须根据接收区调整一次辐射器喇叭形辐射体相对于每个卫星的设置倾角,和一次辐射器的接收极化角。这就带来了使调整角度的机构结构复杂,以及调整工作繁重的问题。通常,常常使用漏斗状喇叭型一次辐射器作为卫星广播天线的一次辐射器。甚至当抛物面反射器具有较小的直径,例如,45cmφ时,能够使一次辐射器之间的设置距离足够大,直到将从其接收微波的相邻卫星互相分开大约8度的距角为止。因此,能够相邻设置一次辐射器的漏斗状喇叭形辐射体,而相互不干扰。相反,在从其接收微波的相邻卫星相互分开4度的较小距角的情况下,一次辐射器之间设置的距离可以小到大约25mm。因此,当使用这样的漏斗状喇叭型一次辐射器时,辐射器喇叭形辐射体互相干扰或接触,因此不可能构成一多波束天线,从而产生必须为从其接收微波的卫星分别安装多个天线的问题。如上所述,例如,在接收来自4度距角的两个卫星的12GHz频带的微波的45cmφ22双波束天线系统的一次辐射器内,喇叭形辐射体间隔大约为25mm。当如图22A和22B所示由一般的漏斗状喇叭形辐射体构成这样的天线的一次辐射器时,孔径直径大约为30mm。因此,从结构上说不能构成天线。为实现这样的天线系统,要求将一次辐射器的孔径直径设定为25mm或更小。在指定为EIAJ(日本电子工业协会标准)的WCI-120的圆波导中,波导的内径为17.475mm。因此,当使用这样的波导时,考虑到实际产品的生产过程,喇叭形辐射体大致具有0度的张角。换句话说,喇叭形辐射体具有如图23A和23B所示的圆波导截面孔径。图22A是常规的漏斗状喇叭型一次辐射体的前视图,图22B是沿图22A的线A-A′的剖面图。图23A是常规的圆波导型一次辐射体的前视图,图23B是沿图23A的线A-A′的剖面图。在图22A和22B,131表示设置在衬底132的漏斗形波导。在衬底132上由印刷电路构成馈电点133,以便使其位于漏斗形波导131底面的中心。图23A和23B所示的圆波导型一次辐射器是取代漏斗形波导131的圆波导135。以与图22A的漏斗状喇叭型一次辐射器的其它组件相同方式构成其他部件。图24表示圆波导型一次辐射器的辐射图。在反射器偏置的情况下,一次辐射器的辐射角大约为40度。在图24的方向图中,漏泄功率在反射器辐射中较大,并且反射器辐射范围内的电场的不均匀性较大。因此,降低天线增益。可以使用这样的方法作为解决上述问题的手段。例如降低喇叭形辐射体的孔径直径,通过一同轴系统提供功率而使用螺旋型天线,以及使用诸如圆波导馈电介质棒天线之类的行波型天线作为一次辐射器。另外,在常规的多波束天线中,从一次辐射器的变频器伸出的接收信号电缆连接到外部切换设备,并且通过控制切换设备的切换操作选择要接收的卫星广播节目。这样的配置存在用户必须购买这样的外部切换设备,以及需要配线和类似工作的问题。当通过使用多个一次辐射器构成一个完整的变频器时,如图29所示在单个衬底201上形成衬底印刷探测器202,并且全部其他的电路也设置在衬底201。每一个衬底印刷探测器202包括水平极化波探头202a和垂直极化波探头202b。衬底印刷探测器202分别设置在多个(例如,两个)一次辐射器孔径203的供电部分。由高频放大器203a和203b放大从水平极化波探头202a和垂直极化波探头202b输出的信号,然后由水平/垂直转换开关204a和204b对它们进行选择。然后由水平/垂直转换开关204a和204b选择的信号进一步由卫星转换开关205进行选择。由高频放大器206放大选择的信号,然后将其提供给频率变换器207。本机振荡器208的振荡输出被提供给变频器207。变频器207输出频率等于来自高频放大器206的信号和来自本机振荡器208的信号之间的频率差值的信号作为中频信号。由中频放大器209放大从变频器207输出的信号。放大信号通过端子210向外输出。常规的多波束天线存在必须分别调整一次辐射器的设置倾角,以及必须分别调整一次辐射器的接收极化角的问题。常规的多波束天线还存在这样的问题,即,在要从其接收微波的卫星相互相距一个较小距离,例如,4度的情况下,相邻排列的漏斗状喇叭型一次辐射器互相接触或干扰,因此不能构成一多波束天线。常规的多波束天线还存在这样的问题,即,为有选择地接收一期望的卫星广播节目,需要一外部切换设备、该设备的配线等。另外,在常规的一次辐射器,从馈电点提供的电流通过喇叭形辐射体孔径的边缘部分或者螺旋型天线的接地平面的边缘部分流向后侧,从而使一次辐射器具有除到反射器的辐射之外的辐射较大的辐射图。因此,降低天线增益。当由用于接收来自卫星的微波的常规变频器接收来自多个卫星的微波时,设定衬底印刷探测器202,以便每个区内与地面平行的轴、目标卫星的轨道倾角,和卫星的极化角相互一致。在这种情况下,变频器仅用于从其接收微波的卫星。因此,当产生对应于全部卫星的变频器时,变频器不能完全分享衬底,结果是降低了生产率,从而加大变频器的生产成本。考虑到这些问题提出了本专利技术。本专利技术的第一目的是提供一种多波束天线,其中能够容易地调整一次辐射器的设置倾角和接收极化角。本专利技术的第二目的是提供一种多波束天线,其中,即使在从其接收微波的卫星相互分开一较小的距角,例如,4度的情况下,一次辐射器的喇叭形辐射体既不互相干扰也不互相接触,并且能构成接收多波束的结构。本专利技术的第三目的是提供一种多波束天线,其中在不需要设置一外部切换设备、配线、及类似装置的情况下,能够容易地选择一期望的卫星广播节目以便接收该节目。本专利技术的第四目的是提供一种用于小间隔的小直径多波束天线内的小增益衰减的一次辐射器,和用于接收来自与一次辐射器集成在一起的卫星的微波的变频器。本专利技术的第五目的是提供一种用于接收来自卫星的微波的变频器,甚至在接收来自多个卫星的微波时,该变频器仍能使用一公共衬底,因此提高了生产率,从而降低生产成本。根据本专利技术的第一方面,提供一种多波束天线,包括反射并聚焦来自多个卫星的微波的一反射器;分别接收由反射器反射并聚焦的多个卫星微波的多个喇叭型一次辐射器;相邻整体地连接到多个喇叭型一次辐射器,并且变频和放大由一次辐射本文档来自技高网...

【技术保护点】
一种多波束天线,包括:一个反射器,用于反射并聚焦来自多个卫星的微波;多个喇叭型一次辐射器,用于分别接收由所述反射器反射和聚焦的多个卫星微波;一个变频器,与所述多个喇叭型一次辐射器相邻整体地连接,该变频器变频并放大分别由所述一次辐 射器接收的卫星信号;探测器,分别用于所述一次辐射器,在所述多个一次辐射器连接到所述变频器的状态下,所述探测器以对应于多个卫星之间的极化角度差的角度差值来设置所述探测器;一个辐射器支撑臂,用于支撑其中所述多个一次辐射器的喇叭形辐射体朝 向所述反射器的反射方向的所述变频器;和一个转动机构,其设置在所述辐射器支撑臂和所述变频器之间,并调整所述变频器的转动位置,所述变频器中通过所述转动机构同时调整所述一次辐射器相对于与地面平行的轴的设置倾角、所述多个一次辐射器的设置倾角、和 每一个所述辐射器的接收极化角。

【技术特征摘要】
...

【专利技术属性】
技术研发人员:今泉博晶坂内功治原修二口博文真锅良太郎
申请(专利权)人:八木天线株式会社
类型:发明
国别省市:JP[日本]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1