燃料电池及燃料电池催化剂制造技术

技术编号:3249799 阅读:385 留言:0更新日期:2012-04-11 18:40
一种直接有机燃料电池(10),包括阳极室(18)内的阳极(12),固体聚合物电解液(14),及阴极室(20)内的气体扩散阴极(16)。电载荷通过电连接(22)连接在阳极(12)与阴极(16)之间。一种包含约10~95%重量甲酸的液体燃料提供给阳极室。氧化剂提供给阴极室。提供排气口(24和26)以从燃料电池中除去二氧化碳和水。(*该技术在2023年保护过期,可自由使用*)

【技术实现步骤摘要】
燃料电池及燃料电池催化剂                         
概括地说,本专利技术涉及燃料电池及燃料电池的催化剂。                         
技术介绍
燃料电池是电化学电池,其中因燃料氧化反应而产生的自由能被转化成电能。燃料电池的应用领域包括电池替换,迷你型和微电子技术、汽车引擎、发电站及很多其它领域。燃料电池的优点之一是其基本上无污染。在氢燃料电池中,氢气被氧化生成水,作为氧化反应的副产物,产生可以利用的电流。固体聚合物膜电解液层可用于隔离氢燃料与氧。阳极和阴极排列在膜的两个相对的表面上。膜电极组件的阳极与阴极层间的电子流可以用来提供电力。然而,氢燃料电池在很多实际应用中是不实用的,因为贮存和处理氢气的困难性。作为氢燃料电池的替代品,有机燃料电池被证明可以应用于很多应用领域。在有机燃料电池中,有机燃料如甲醇在阳极被氧化成二氧化碳,同时空气或氧在阴极被还原成水。有机/空气燃料电池优于氢燃料电池的优点之一是前者可以利用液体有机燃料来工作。这消除了与氢气处理和贮存有关的问题。某些有机燃料电池需要通过转化器进行初始转化,将有机燃料转化成氢气。这些电池被称之为″间接″燃料电池。所需的转化器增加了电池的体积、成本、复杂性和启动时间。其它类型的有机燃料电池,称之为″直接″有机燃料电池,消除了这些缺点,通过直接氧化有机燃料而无需转化成氢气。迄今为止,直接有机燃料电池的开发主要集中在甲醇和其它醇类燃料的使用。常规的直接甲醇燃料电池具有与其自身相关的尚待解决的问题。例如,甲醇和其它醇类对商用聚合物膜电极组件具有高渗透和扩散跨越率(crossover rate)。跨越的燃料避开了电极反应,因而不能用于产生电能。这限制了电池效率。与跨越有关的另一问题是阳极中毒。随着甲醇或其它醇类燃料跨越聚合物膜到达阴极侧,甲醇或其它醇类燃料吸附在阴极催化剂上从而阻断反应位置。因而降低电池效率。就解决该问题提出的一个解决方案是提-->供额外的催化剂。但是,这样会增加费用,尤其是在考虑到通常使用的是铂等十分昂贵的贵金属或准贵金属催化剂时。由于这种严重的跨越,甲醇和其它醇类燃料电池通常以不大于约3~8%的燃料浓度工作。然而,使用这种稀释液又会带来其它问题。这种低燃料浓度需要较大量的超纯水,通常是通过包括泵和过滤器的再循环系统来提供。此外,需要精密地监测和控制燃料的浓度,因而需要传感器和控制器。所有这些外围设备均增加直接有机燃料电池的成本、复杂性、重量和尺寸。另外,这种所需的外部水管理设备,极大地限制了直接甲醇燃料电池在对尺寸和重量有严格要求的应用中的有效性。例如,就便携式、迷你型和微电子应用而言,对外围设备尺寸、重量和复杂性的要求,使得直接甲醇燃料电池的应用不切实际。而且,燃料电池中的稀释液在很多燃料电池,例如户外应用的便携式设备,可能碰到的温度下会冻结和膨胀。膨胀会使设备失灵。Conduit等人的美国专利U.S.6,528,194指出,当燃料电池不工作时,可以通过使加热的流体循环经过燃料罐来避免冻结。然而,这样会浪费能量并增加复杂性。现存直接甲醇燃料电池的其它问题和阳极引起的电氧化反应有关。例如,在很多直接甲醇燃料电池中,在氧化/还原反应期间由甲醇产生的中间产物是有毒的一氧化碳(CO)气体,因而存在危险。此外,人们知道CO会使铂(Pt)等催化剂中毒,从而降低电池效率。在现有技术中,这些及其它问题尚未解决。                       本专利技术概述本专利技术的一个实施方案涉及一种直接有机燃料电池,其包括与阴极相连的阳极,阳极室,及阴极室。燃料电池还包括至少包含10%重量有机燃料的液体燃料溶液。在本专利技术的一个优选实施方案中,有机燃料为甲酸并且存在阳极催化剂,阳极催化剂包括铂(Pt)和钯(Pd)。本专利技术的另一实施方案涉及一种膜电极组件,其包括固体聚合物电解液,及位于固体聚合物电解液一个表面上的阳极和另一表面上的阴极。阳极被做成一定的形状以促进有机燃料直接分解,不形成CO中间体。本专利技术的又一实施方案涉及一种制备阳极催化剂的方法,该方法包括如下步骤:制备纳米颗粒的悬浮液;将该悬浮液涂布在一个载体上;干燥悬浮-->液,以在载体上形成薄膜;然后将载体浸渍在一种金属溶液中,以在Pt纳米颗粒上自发地沉积金属岛状物(metal island)。本专利技术的再一实施方案涉及一种用于直接甲酸燃料电池的阳极催化剂。示例性的阳极催化剂包括其上至少涂有第二种金属的金属纳米颗粒,该催化剂可有效地促进甲酸沿着不包括形成CO中间体的反应路径脱氢形成CO2和H+。本专利技术的又一实施方案涉及低冰点的燃料电池。                         附图说明图1是本专利技术的示例性燃料电池的示意图;图2是制备本专利技术的催化剂的示例性方法的流程图;图3(a)和(b)分别是本专利技术的第一示例性甲酸燃料电池的电池活性和功率相对于甲酸浓度的数据曲线;图4是甲酸浓度对本专利技术第一示例性甲酸燃料电池的开路电压的影响的数据曲线;图5是甲酸浓度对第一示例性燃料电池在0.4V的电流密度的影响的数据曲线;图6是甲酸浓度对第一示例性燃料电池的电阻的影响的数据曲线;图7是12M甲酸的第一示例性燃料电池的阳极极化的数据曲线;图8是本专利技术的一种示例性催化剂在相当于电化学电池的示例性燃料电池中的循环伏安数据曲线;图9是示例性催化剂在相当于电化学电池的示例性燃料电池中的反应活性数据曲线;图10是本专利技术的示例性催化剂的CO溶出伏安法数据曲线;图11(a)和11(b)是本专利技术的示例性催化剂与5M甲酸于本专利技术的第三示例性燃料电池中的性能数据曲线;图12是本专利技术的示例性催化剂与5M甲酸于本专利技术的第三示例性燃料电池中的性能数据曲线;图13是本专利技术的示例性催化剂在0.6V下的性能随时间变化的数据曲线;图14是本专利技术的示例性催化剂在0.5V下的性能随时间变化的数据曲-->线;图15是本专利技术的示例性催化剂在0.4V下的性能随时间变化的数据曲线;及图16是本专利技术的示例性催化剂在0.3V下的性能随时间变化的数据曲线。                     本专利技术详细描述图1的示意图概括性地示出了本专利技术的示例性直接有机燃料电池并以10加以表示。燃料电池10包括阳极12,固体聚合物质子传导电解液14,气体扩散阴极16。阳极12封装在阳极室18中,阴极16封装在阴极室20中。当电载荷(未示出)通过电连接22连接于阳极12与阴极16之间时,在阳极12发生有机燃料的电氧化,在阴极16发生氧化剂的电还原。在阳极12和阴极16发生不同的反应,导致在两个电极之间产生电压差。在阳极12通过电氧化而产生的电子经由电连接22传导,最终在阴极16被俘获。产生于阳极12的氢离子或质子穿越膜电解液14,迁移至阴极16。因而,通过经由电池的离子流和经由电连接22的电子流维持电流。该电流可以用来驱动电设备。阳极12、固体聚合物电解液14、及阴极16在一优选方案中为单一多层复合结构,其可以称为膜电极组件(″MEA″)。优选固体聚合物电解液14为质子传导的阳离子交换膜,其包含硫酸根阴离子,例如全氟化的磺酸聚合物膜,商业上可以从特拉华州的杜邦化学品有限公司得到,注册商标为NAFION。NAFION是四氟乙烯与本文档来自技高网...

【技术保护点】
一种直接有机燃料电池,包括:液体燃料溶液,其至少包含10%重量的甲酸;阳极,其包含在阳极室中,该阳极室中还包含所述液体燃料溶液;阴极,其与所述阳极电连接并包含在阴极室中,该阴极室中还包含氧化剂;及电解液,其将 所述阳极与所述阴极隔离。

【技术特征摘要】
US 2002-4-4 60/369,9921.一种直接有机燃料电池,包括:液体燃料溶液,其至少包含10%重量的甲酸;阳极,其包含在阳极室中,该阳极室中还包含所述液体燃料溶液;阴极,其与所述阳极电连接并包含在阴极室中,该阴极室中还包含氧化剂;及电解液,其将所述阳极与所述阴极隔离。2.根据权利要求1的直接有机燃料电池,其中所述电解液包括固体聚合物质子交换膜,且所述阳极与所述阴极排列在该固体聚合物质子交换膜的两个相对的侧面上。3.根据权利要求2的直接有机燃料电池,其中所述固体聚合物质子交换膜包含全氟磺酸离聚物。4.根据权利要求2的直接有机燃料电池,其中所述电解液基本上不会被所述的液体燃料溶液渗透。5.根据权利要求1的直接有机燃料电池,其中所述燃料溶液包含约10%至约95%(重量)的甲酸。6.根据权利要求1的直接有机燃料电池,其中所述燃料溶液包含约25%至65%(重量)的甲酸。7.根据权利要求6的直接有机燃料电池,其中所述燃料溶液包含至少约30%(重量)的水。8.根据权利要求1的直接有机燃料电池,其中所述氧化剂包括增湿的空气,且所述甲酸的浓度为约50%至约70%(重量)。9.根据权利要求1的直接有机燃料电池,其中所述氧化剂包括干燥的空气,且所述甲酸的浓度为约20%至约40%(重量)。10.根据权利要求1的直接有机燃料电池,其中所述阳极的构形促进甲酸通过避免形成CO中间产物的直接路径进行反应。11.根据权利要求1的直接有机燃料电池,其中该电池在约25℃的温度下工作时,可有效产生至少约20mW/cm2的功率密度。12.根据权利要求1的直接有机燃料电池,其中该电池在约25℃的温度下工作时,可有效产生至少约60mW/cm2的功率密度。-->13.根据权利要求1的直接有机燃料电池,其中该电池在约25℃的温度和约0.7V的电压下工作时,可有效产生至少约5mA/cm2的电流。14.根据权利要求1的直接有机燃料电池,其中该电池在约25℃的温度和约0.7V的电压下工作时,可有效产生至少约10mA/cm2的电流。15.根据权利要求1的直接有机燃料电池,其中该电池在约25℃的温度和约0.8V的电压下工作时,可有效产生至少约5mA/cm2的电流。16.根据权利要求1的直接有机燃料电池,其中所述阳极室具有至少一个CO2排气口。17.根据权利要求16的直接有机燃料电池,其中所述排气口通常为管状的并由疏水材料制成,具有至少约0.5的长度/直径比,且直径小于约1/16英寸。18.根据权利要求1的直接有机燃料电池,还包括含金属纳米颗粒的阳极催化剂,所述金属纳米颗粒的表面具有第二金属的涂层。19.根据权利要求18的直接有机燃料电池,其中在所述金属纳米颗粒上,所述涂层包含离散的岛状物。20.根据权利要求18的直接有机燃料电池,其中所述金属纳米颗粒为Pt,Pd,Ru,Re,Ir,Au,Ag,Co,Fe,Ni或Mn中的一种或多种,且所述涂层由Pt,Pd或Ru中的一种或多种制成。21.根据权利要求18的直接有机燃料电池,其中所述金属纳米颗粒为Pt,且所述涂层为Pd或Ru中的一种或多种。22.根据权利要求21的直接有机燃料电池,其中所述阳极催化剂的装载量为约0.5至约12gm/cm2。23.根据权利要求18的直接有机燃料电池,其中所述涂层的厚度不大于约3nm。24.根据权利要求18的直接有机燃料电池,其中所述阳极催化剂具有不同的表面组成和体相组成。25.根据权利要求1的直接有机燃料电池,其中所述阳极的构形促进甲酸脱氢至CO2和H+,不形成CO中间体。26.一种直接甲酸燃料电池,包括:聚合物电解液膜,其具有相对的第一表面和第二表面;阳极,其排列在所述电解液膜的第一表面上,并包含在阳极室中,该阳-->极室还包含甲酸燃料溶液,该甲酸燃料溶液的甲酸浓度为约25%至约65%(重量)、水浓度为至少约30%(重量),该阳极包括有效促进甲酸燃料溶液直接脱氢而不形成CO中间体的催化剂;阴极,其包含在阴极室中并排列在所述电解液膜的第二表面,该阴极室还包含O2;及电连接,其将所述阳极连接到所述阴极上。27.一种用于包含有机燃料的直接有机燃料电池的膜电极组件,所述燃料电池包括:具有第一和第二表面的固体聚合物电解液,位于所述第一表面的阳极,及位于所述第二表面并...

【专利技术属性】
技术研发人员:理查德I马塞尔辛西娅A赖斯皮奥特尔瓦茨祖克安德尔泽吉威科夫斯基
申请(专利权)人:伊利诺伊大学受托管理委员会
类型:发明
国别省市:US[美国]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利