一种基于Fano共振的水溶性B族维生素检测传感器制造技术

技术编号:31926859 阅读:17 留言:0更新日期:2022-01-15 13:12
本实用新型专利技术公开了一种基于Fano共振的水溶性B族维生素检测传感器,其特征在于,包括自下而上顺序叠接的基底层和金属层,所述的金属层中设有贯穿金属层的第一谐振腔,第一谐振腔呈直波导状,第一谐振腔呈直波导状的中部设有向外侧延伸的呈半圆状的凸起部,金属层中在第一谐振腔的凸起部同侧位置的旁边处设有第二谐振腔,第二谐振腔的截面呈椭圆环状,第一谐振腔和第二谐振腔不相通,第一谐振腔和第二谐振腔的腔内分别填充有同等浓度不同种水溶性B族维生素溶液。这种传感器具有灵敏度高、精度好、响应快、制备简单、可靠性高的优点,适用于纳米级别传感需求。纳米级别传感需求。纳米级别传感需求。

【技术实现步骤摘要】
一种基于Fano共振的水溶性B族维生素检测传感器


[0001]本技术涉及微纳米光学传感领域,具体是一种基于Fano共振的水溶性B族维生素检测传感器。

技术介绍

[0002]Fano共振线谱是一种狭窄而又尖锐的非对称性的线性形状,可由窄的离散态(暗模式)与宽的连续态(亮模式)之间的相互作用来解释。Fano共振对周围环境的细小变化特别敏感,且Fano共振与其对应的波长位移变化具有良好的线性关系,进而可通过Fano共振线谱波长的位移变化实现传感。基于表面等离子激元(SPPs)的Fano共振在纳米结构上的传播能克服传统的光学衍射极限,使其在传感领域具有很大的潜应用价值,并成为相关领域的研究热点之一。因此,基于Fano共振原理制造的波导结构被广泛的应用于光开关、传感器、滤波器、激光、非线性与慢光器件等。
[0003]《Photonics Letters of Poland》在2020年刊载了“Numerical investigation of a small footprint plasmonic Bragg grating structure with a high extinction ratio”这篇文章,Muhammad Ali Butt团队设计了一种基于布拉格光栅结构的折射率传感器,灵敏度为950nm/RIU;《Photonics and Nanostructures
ꢀ‑ꢀ
Fundamentals and Applications》在2020年刊载了“Nanodots decorated MIM semi

ring resonator cavity for biochemical sensing applications”这篇文章,文中N.L.Kazanskiy团队提出一种基于半圆环腔内加纳米粒的高灵敏的等离子体传感器,灵敏度高达1084.21nm/RIU;《Plasmonics》在2020年刊载了“Design of a Refractive Index Plasmonic Sensor Based on a Ring Resonator Coupled to a MIM Waveguide Containing Tapered Defects”,文中Mahdiye Rahmatiyar团队研究了一种基于缺陷直波导与缺陷圆环腔耦合的新型传感器,灵敏度提升到1295nm/RIU。尽管上述团队已经把传感器的灵敏度提升到了另一个高度,但是传感器的灵敏度仍然偏低,同时,传感器的制备过程繁琐、可靠性低、操作难度大等问题制约着传感器在工业化生产与实际生活中的应用。

技术实现思路

[0004]本技术的目的是针对现有传感器的技术问题,而提供一种基于Fano共振的水溶性B族维生素检测传感器。这种传感器具有灵敏度高、精度好、响应快、制备简单、可靠性高的优点,适用于纳米级别传感需求。
[0005]实现本技术目的的技术方案是:
[0006]一种基于Fano共振的水溶性B族维生素检测传感器,与现有技术不同的是,包括自下而上顺序叠接的基底层和金属层,所述的金属层中设有贯穿金属层的第一谐振腔,第一谐振腔呈直波导状,第一谐振腔呈直波导状的中部设有向外侧延伸的呈半圆状的凸起部,金属层中在第一谐振腔的凸起部同侧位置的旁边处设有第二谐振腔,第二谐振腔截面呈椭圆环状,第一谐振腔和第二谐振腔不相通,第一谐振腔和第二谐振腔的腔内分别填充有同
等浓度不同种水溶性B族维生素溶液,如维生素B1、B3和B6溶液。
[0007]所述的基底层的材料为二氧化硅。
[0008]所述的金属层的材料为金属单质银。
[0009]所述第一谐振腔和第二谐振腔腔体厚度与金属层的厚度一致。
[0010]所述第一谐振腔和第二谐振腔的外形尺寸大小均可调。
[0011]这种水溶性B族维生素检测传感器采用气相沉积法通过在基底层上沉积金属层,然后通过电子束刻蚀法刻蚀出第一谐振腔和第二谐振腔。
[0012]入射光从第一谐振腔直波导的一侧以任意角度入射,并经过第一谐振腔与第二谐振腔之间发生耦合作用从第一谐振腔另一侧出射,在波导中会产生可以克服衍射极限的SPPs,SPPs将沿着第一谐振腔向另一侧传播。
[0013]本技术方案中,Fano共振波长与其对应的透射率可通过调整第一谐振腔和第二谐振腔的几何参数来进行灵活的定量调节,从而实现较高的检测能力。在第一谐振腔和第二谐振腔中填充不同种类的水溶性B族维生素溶液,由于水溶性B族维生素溶液的折射率与其对应的浓度呈线性关系,并且不同的种水溶性B族维生素对应着不同的折射率,所以同等浓度的不同种水溶性B族维生素的改变时,会导致其对应的折射率发生改变,从而改变共振波长的位置,实现对不同种水溶性B族维生素的检测。
[0014]上述水溶性B族维生素检测传感器可以得到共振波长位移与同等浓度的水溶性B族维生素的折射率成一一对应的关系,且随着水溶性B族维生素的改变,共振波长位置会发生偏移现象。
[0015]在实际应用中,当第一谐振腔和第二谐振腔参数固定时,由于加入的水溶性B族维生素的种类不同,会使得其对应的折射也会不同,从而影响共振波长位置的变化,通过频谱测量仪测量出共振波长位置的变化量,即可快速准确的检测出不同种的水溶性B族维生素。
[0016]上述水溶性B族维生素检测传感器可通过调整第一谐振腔和第二谐振腔的几何参数以调控传感器的共振波长,进而使该传感器实现多波长的工作应用。
[0017]上述传感器之所以能适用于纳米级别的水溶性B族维生素的检测传感等领域,是因为采用基于SPPs的Fano共振原理,SPPs具有体积小、响应快、能克服衍射极限的优点。
[0018]这种传感器具有灵敏度高、精度好、响应快、制备简单、可靠性高的优点,适用于纳米级别传感需求。
附图说明
[0019]图1为实施例的结构示意图。
[0020]图中,1.基底层2.金属层3.第一谐振腔4.第二谐振腔。
具体实施方式
[0021]下面结合附图和实施例对本
技术实现思路
作进一步阐释,但不是对本技术的限定。
[0022]实施列:
[0023]参照图1,一种基于Fano共振的水溶性B族维生素检测传感器,包括自下而上顺序叠接的基底层1和金属层2,所述的金属层2中设有贯穿金属层2的第一谐振腔3,第一谐振腔
3呈直波导状,第一谐振腔3呈直波导状的中部设有向外侧延伸的呈半圆状的凸起部,金属层2中在第一谐振腔3的凸起部同侧位置的旁边处设有第二谐振腔4,第二谐振腔4的截面呈椭圆环状,第一谐振腔3和第二谐振腔4不相通,第一谐振腔3和第二谐振腔4的腔内分别填充有同等浓度不同种水溶性B族维生素溶液,如维生素B1、B3和B6溶液。
[0024]本例基底层1的材料为二氧化硅。
[0025]本例金属层2的材料为金属单质银。
[0026]所述第一谐振腔3和第二谐振腔4腔体厚度与金属层2的厚度本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种基于Fano共振的水溶性B族维生素检测传感器,其特征在于,包括自下而上顺序叠接的基底层和金属层,所述的金属层中设有贯穿金属层的第一谐振腔,第一谐振腔呈直波导状,第一谐振腔呈直波导状的中部设有向外侧延伸的呈半圆状的凸起部,金属层中在第一谐振腔的凸起部同侧位置的旁边处设有第二谐振腔,第二谐振腔的截面呈椭圆环状,第一谐振腔和第二谐振腔不相通,第一...

【专利技术属性】
技术研发人员:银锦国朱君
申请(专利权)人:广西师范大学
类型:新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1