一种基于相变材料的透射电镜电学测量载网制造技术

技术编号:3149235 阅读:219 留言:0更新日期:2012-04-11 18:40
本发明专利技术涉及一种透射电子显微镜样品载网,属于纳米材料测量领域。包括有支撑部分和电路部分,所述的支撑部分包括有金属环(1),所述的电路部分包括有两个电极(2)、待测元件和相变材料非晶薄膜(5),电极(2)与金属环(1)绝缘粘合,相变材料非晶薄膜(5)均匀分布在两电极(2)之间,相变材料薄膜(5)为非晶态,待测元件位于相变材料非晶薄膜(5)中或者集成在其中的一个电极(2)上。本发明专利技术中的连线具有可擦写的特点,通过电极两端加较高电压,或者直接对载网进行一定的激光脉冲辐照,使相变材料薄膜完全非晶化,使已经形成的电流通路消失实现了测量电路的可选择性,可反复擦写性。

【技术实现步骤摘要】

本专利技术涉及一种透射电子显微镜样品载网,属于纳米材料测量领域。技术背景透射电子显微镜(以下称透射电镜或电镜)是现代化的大型仪器,是研 究物质微观结构的有力工具,它在物理,化学,材料科学,生命科学等领域 有着广泛的应用,特别是目前发展迅速的纳米科学和
,是最为有力的研究工具之一,目前透射电子显微镜的分辨能力己达0.2nm,接近固态物质 原子间距。随着t敫禾几电系统(MEMS, micro electromechanical system)禾口 纳机电系统(NEMS, nano electromechanical systerm)的发展,对于单根纳米 线或纳米尺度的微型器件在电场作用下电学性能研究显的尤为迫切,但是由 于单根纳米线或微型器件结构细小,难于操纵,在透射电子显微镜中如何对 单根纳米线或微型器件样品进行固定和外加电场,从纳米尺度和原子层次揭 示纳米材料在外电场作用下的电学性能,和在电场效应成为摆在研究人员面 前的难题。目前在透射电子显微镜中由于受到样品台与极靴极为有限的空间, 一般是l-3mm,在原子尺度分辨率下对于单根纳米线或纳米薄膜的操纵和力学 性能的直接测量非常困难,文献中已经报道的对纳米线进行电学测量的方法 主要是基于聚焦离子束FIB (focus iron beam)技术,在待测物两端沉积电极 进行测量,但是电路一旦搭建起来,电极之间纳米线的长短以及电极位置都 不能更改,而且不能在透射电镜下直接观测待测样品在电场作用下的电学行 为以及原子尺度微观结构的变化。
技术实现思路
本专利技术的目的在于克服了现有的测量方法的上述缺陷,提供了一种基于 相变材料的透射电镜电学测量载网。在本载网中,由于相变材料的特点,连 线具有可擦写的特点,通过电极两端加较高电压,或者直接对载网进行一定的激光脉冲辐照,使相变材料薄膜完全非晶化,使已经形成的电流通路消失 实现了测量电路的可选择性,可反复擦写性。为了实现上述目的,本专利技术采取了如下技术方案。本装置包括有支撑部 分和电路部分,所述的支撑部分包括有金属环1,电路部分包括有两个电极2、 待测元件和相变材料非晶薄膜5。电极2与金属环1绝缘粘合,相变材料非晶 薄膜5均匀分布在两电极2之间,相变材料非晶薄膜5为非晶态,待测元件 位于薄膜中或者集成在其中的一个电极2上;所述的相变材料非晶薄膜5在电子束或激光辐照下从非晶相相变为晶体 相,并能够在高电压或电脉冲或激光照射下从晶体转变为非晶。金属环1可以为导电导热性良好,容易加工的铜环、镍环、金环等。为 了保证金属环1固定在透射电镜样品杆上,金属环1的外径与现有技术载网 一致为3mm,为了保证电子束透过对样品进行结构分析,中心开孔,金属环l 的厚度在0. lmm 0. 5mm之间。所述的两个电极2为宽度在lmm 1. 5mm之间、长度在1. 0mm 2. 5腿之间的梳状电极。所述相变材料非晶薄膜5的厚度为10nm 50nm。所述的待测元件为纳米尺寸的微型器件。 所述的微型器件纳米线或纳米球等。 本专利技术有如下优点1) 本专利技术中电路的搭建(即利用电子束使非晶相变材料晶化),电压的 加载均是在透射电镜实验中进行,因而实现了在透射电镜中原位对纳米尺度 的待测单元进行电学测量以及观测,提供了一种新的纳米线或薄膜的原位电 学测试方法,具有性能可靠,安装方便,结构简单的特点,拓展了透射电镜 的功能。2) 本专利技术中的载网外形尺寸与现有技术载网基本一致,可以方便的装 入高分辨透射电镜中,从而利用已有的透射电镜双倾样品杆,可以实现X, Y两个方向大角度倾转,可以在原位通电的同时从最佳的晶带轴实现高分辨成像。3)待测元器件具有可选择性,可以先进行电镜观测,从两电极间的若 干待测单元中选择其中的任意一个待测单元(或者若干个进行并联测量), 利用电子束使该待测单元同两电极间的非晶相变材料薄膜晶化,晶化部分电 阻降低,从而外加电场时,电场将直接作用于选定单元两端,即实现了电路 的搭建,从而实现选择性测量。4)由于相变材料的特点,连线具有可擦写的特点,通过电极两端加较高 电压,或者直接对载网进行一定的激光脉冲辐照,使相变材料薄膜完全非晶 化,使已经形成的电流通路消失实现了测量电路的可选择性,可反复擦写性。 附图说明图1透射电镜电学测量载网示意中1、金属环,2、电极,3、位于薄膜上但与电机没有接触的待测元件,4、集成在电极上的待测元件,5、相变材料非晶薄膜,6、相变材料非晶薄膜的结晶部分。具体实施方式下面结合图1详细说明本实施例。本实施例包括有支撑部分和电路部分,支撑部分是一个金属环l,电路部 分包括有两个相对的金属电极2及其间的待测元件3、 4和相变材料薄膜5, 电极2与金属环1环绝缘粘合,相变材料薄膜5为非晶态,待测元件3位于 薄膜5上但与电极没有接触,待测元件4集成在其中的一个电极上。两块电 极2对称分布在金属环1的中心。本实施例是在普通用的透射电镜铜环上面绝缘固定两块电极2,两块电极 2之间铺上一层相变材料非晶薄膜5,利用电子束能够诱发相变材料晶化的特 点,将待测元件与两电极2之间的相变材料晶化,由于晶化后的相变材料电 阻大大降低,两电极与待测单元导通,利用商业化的双倾透射电子显微镜加电样品台加电场,使载网中的待测单元两端形成电场,同时还可以对其电学 性质进行测量,同时原位实时记录待测单元在外场作用的结构信息和变形过 程,将微区电学性能与微观结构直接对应起来,从原子层次上揭示纳米线或 微型器件电学性能和导电机制。待测单元可能是纳米线或者微型器件,根据方便与否决定是直接置于薄 膜中还是集成在某一电极上,可以连接有若干个待测元件,但各待测元件之 间不接触。利用电子束辐照诱发相变材料非晶薄膜晶化时,电子束尺寸直径为5 10nm,但由于电子散射的原因,晶化区域直径在40 60mn,由于相变 材料在高电压或者一定参数的激光脉冲下能够由晶体转变为非晶,在测量结 束后,可以将相变材料薄膜全部转化为非晶,从而可以利用此性质重新选择 待测元件,搭建电流通路,实现了纳米尺度电路的可擦写。相变材料为相变前后电阻差异很大的常用材料如GST(锗锑碲),当发生晶 化时,因相变材料相变前后两种不同材料导电系数差异相对很大而晶化部分 电阻相对较低,从而通电压时电流将优先通过晶化区域。本实施例中,根据 需待测单元的材质和直径,两电极为矩形宽度在0.75皿 lmm之间,长度在 1.6mm 2.5mm之间,两电极间距离根据但测单元的尺寸略有增加,相变材料 薄膜厚度为10 50nm,如果太厚则不容易通过电子书诱导结晶。首先利用电子束辐照能使相变材料晶化的特点,使用透射电子束将电极 与待测元件之间薄膜一定区域晶化,形成低电阻通路。当载网固定在现有技术的透射电镜加电样品台上时,随着电台两端电压 的升高,加在两电极上的电压逐渐升高,由于晶化后的相变材料电阻较低, 电压直接作用于待测单元两端,通过外界引线可以测量通电后的待测单元电 学性能。通过透射电镜成像系统还可以原位记录待测单元在电场下的行为, 给出纳米尺度待测元件电压电流曲线,并从微观结构变化揭示待测单元的导 电机制。使用本实施例中的透射电子显微镜载网对待测元件实行原位动态测试的具体步骤叙述如下1) 将待测元件3固定在两本文档来自技高网...

【技术保护点】
一种基于相变材料的透射电子显微镜电学测量载网,其特征在于:包括有支撑部分和电路部分,所述的支撑部分包括有金属环(1),所述的电路部分包括有两个电极(2)、待测元件和相变材料非晶薄膜(5),电极(2)与金属环(1)绝缘粘合,相变材料非晶薄膜(5)均匀分布在两电极(2)之间,相变材料薄膜(5)为非晶态,待测元件位于相变材料非晶薄膜(5)中或者集成在其中的一个电极(2)上;所述的相变材料非晶薄膜(5)在电子束或激光辐照下从非晶相相变为晶体相,并能够在高电压或电脉冲或激光照射 下从晶体转变为非晶。

【技术特征摘要】
1、一种基于相变材料的透射电子显微镜电学测量载网,其特征在于包括有支撑部分和电路部分,所述的支撑部分包括有金属环(1),所述的电路部分包括有两个电极(2)、待测元件和相变材料非晶薄膜(5),电极(2)与金属环(1)绝缘粘合,相变材料非晶薄膜(5)均匀分布在两电极(2)之间,相变材料薄膜(5)为非晶态,待测元件位于相变材料非晶薄膜(5)中或者集成在其中的一个电极(2)上;所述的相变材料非晶薄膜(5)在电子束或激光辐照下从非晶相相变为晶体相,并能够在高电压或电脉冲或激光照射下从晶体转变为非晶。2、 根据权利要求1所述的一种基于相变材料的透射电子显微镜电学测量载网, 其特征在于所述的金属环(1)...

【专利技术属性】
技术研发人员:张泽王珂刘攀韩晓东
申请(专利权)人:北京工业大学
类型:发明
国别省市:11[中国|北京]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利