本发明专利技术涉及油气勘探与开发技术领域,公开了一种基于深度学习的碳酸盐岩断缝洞结构地震表征方法,所述方法包括:采用实际资料与模拟数据相结合的方法,分类构建断、缝、洞训练数据集;将断裂与溶洞地震识别作为三维图像分割问题,将裂缝地震识别作为回归问题,分类建立并训练断、缝、洞地震识别深度学习模型;将已训练的深度学习模型分别应用于研究区实际三维地震数据,得到断、缝、洞分类预测三维数据体;最终通过断、缝、洞分类预测结果的融合来表征断缝洞结构。本发明专利技术方法基于深度学习充分挖掘地震数据有效信息,实现真三维地震资料解释,可有效提高碳酸盐岩断缝洞结构地震表征的精度和可靠性。度和可靠性。度和可靠性。
【技术实现步骤摘要】
一种基于深度学习的碳酸盐岩断缝洞结构地震表征方法
[0001]本专利技术涉及油气勘探与开发
,更具体地,是一种针对碳酸盐岩断控岩溶缝洞型油气藏进行断缝洞结构地震表征的方法。
技术介绍
[0002]断裂控制的岩溶缝洞型油气藏是近来发现的一类重要的油气藏类型,尤其是在塔里木盆地塔北、塔中深层奥陶系碳酸盐岩中,受大规模走滑断裂控制的缝洞型油气藏广泛发育,具有极大油气勘探开发潜力。断控岩溶缝洞以断裂为核心,在构造应力作用下形成断裂破碎带,经历多期大气淡水岩溶,叠加深层热液溶蚀改造,形成复杂的岩溶缝洞储层,断缝洞结构极其复杂。
[0003]三维地震是深层缝洞结构表征的重要手段,但深部地震资料分辨率低,缝洞储层类型多样、尺度差异大,断缝洞结构地震表征难度大、精度低。“断、缝、洞”分别指断裂、裂缝、溶洞。走滑断裂垂向断距小,地震断裂响应特征弱,常规人工解释难度大,现有地震断裂识别方法如相干体、方差体属性等提取的地震断裂响应特征弱,容易与地震噪声相混淆,走滑断裂识别效果较差。溶洞尺度差异大、结构及组合多样,地震响应特征复杂,现有技术主要通过地震振幅属性,如均方根振幅、最大振幅、振幅变化率等方法进行识别,但对于溶洞的结构、形态、边界的识别误差较大。裂缝由于尺度小,叠后地震数据响应微弱,现有叠后地震方法如蚂蚁追踪等,裂缝识别钻井验证精度较低。
[0004]总体来看,现有技术主要通过不同的地震属性方法识别断、缝、洞,识别精度较低,难以精细表征断缝洞结构,不能满足断控岩溶缝洞型油气藏勘探开发储层结构精细表征需求。深度学习是当今最强大的机器学习方法之一,具有很强的特征提取、非线性模式拟合能力,本专利技术提出一种基于深度学习的方法用来解决断缝洞结构精细表征的难题。
技术实现思路
[0005]本专利技术针对现有断缝洞结构表征技术的局限性,提出一种基于深度学习的碳酸盐岩断缝洞结构地震表征方法,可以有效提高断缝洞结构地震表征的精度和可靠性,其实现步骤包括:
[0006]步骤1,考虑研究区地质与地震资料特征,采用实际资料与模拟数据相结合的方法,分类构建断、缝、洞训练数据集:
[0007]步骤1.1,构建三维模拟断裂及正演地震数据集;
[0008]步骤1.2,构建三维模拟溶洞及正演地震数据集;
[0009]步骤1.3,构建测井解释裂缝及井旁三维地震数据集;
[0010]步骤2,分类建立并训练断、缝、洞识别深度学习模型:
[0011]步骤2.1,将断裂识别作为三维图像分割问题,以三维正演地震数据作为输入,以三维模拟断裂数据作为标签,搭建三维卷积编解码器深度学习架构,将断裂数据集分为训练集、验证集、测试集,反复对三维卷积编解码器进行训练、测试,不断优化模型参数;
[0012]步骤2.2,将溶洞识别作为三维图像分割问题,以三维正演地震数据作为输入,以三维模拟溶洞数据作为标签,搭建三维卷积编解码器深度学习架构,将溶洞数据集分为训练集、验证集、测试集,反复对三维卷积编解码器进行训练、测试,不断优化模型参数;
[0013]步骤2.3,将裂缝识别作为回归拟合问题,以三维井旁地震数据作为输入,以地震数据对应的测井识别裂缝数据作为标签,搭建三维卷积网络深度学习架构,将裂缝数据集分为训练集、验证集、测试集,反复对模型进行训练、测试,不断优化模型参数;
[0014]步骤3:将已完成训练的断、缝、洞深度学习模型,分别应用于实际研究区三维地震数据,实现断、缝、洞分类预测;
[0015]步骤4:将断、缝、洞地震分类预测结果进行融合,可在平面、剖面、三维空间表征断缝洞结构。
[0016]上述技术方案中,所述步骤1.1中,三维模拟断裂数据包括不同倾角、倾向、断距、组合的断裂,在此基础上采用三维褶积叠加随机噪声生成断裂正演模拟三维地震数据。
[0017]上述技术方案中,所述步骤1.2中,三维模拟溶洞数据包括不同洞长、洞高、宽高比的椭球状溶洞,采用序贯高斯法随机模拟溶洞及围岩岩石物理属性,在此基础上采用实际地震资料提取子波进行三维褶积运算,叠加随机噪声生成溶洞正演模拟三维地震数据。
[0018]上述技术方案中,所述步骤1.3中,测井解释裂缝数据主要是指成像测井解释的裂缝发育线密度、孔隙度等,作为标签数据;提取井旁实际三维地震数据作为输入数据,同时可以提取多种裂缝敏感地震属性作为多通道输入数据。
[0019]上述技术方案中,所述步骤2.1与2.2中,三维卷积编解码器由编码器(Encoder)和解码器(Decoder)构成,编码器由多个三维卷积层构成,通过控制卷积步长不断降低输出特征体的维度;解码器由多个三维反卷积层和卷积层构成,通过控制反卷积步长不断增加输出特征体的维度,输出数据与输入数据维度相同;使用线性整流函数(ReLU)作为激活函数,使用Dropout层提高模型的泛化性能,使用二元交叉熵(binary cross
‑
entropy)作为损失函数,使用Adam作为优化函数。
[0020]上述技术方案中,所述步骤2.3中,三维卷积网络由多层三维卷积层、Dropout层和全连接层构成,输入是三维地震单元,输出是一维裂缝密度数据,使用均方误差(mean squared error)作为损失函数。
[0021]上述技术方案中,所述步骤3中,实际三维地震数据的应用中,采用多方向三维体窗口滑动的方法逐步完成整个三维地震数据的预测,得到断、缝、洞分类预测三维数据体。
[0022]上述技术方案中,所述步骤4中,断、缝、洞地震分类预测结果的融合,采用数据合并运算、镂空叠加、透明化显示等方法得到断缝洞结构表征结果。
[0023]本专利技术提供了一种基于深度学习的碳酸盐岩断缝洞结构地震表征方法,克服了人工解释和常规属性方法的局限性,充分提取三维地震数据中有效信息,真正实现了三维空间断、缝、洞识别,可以有效提高断控岩溶缝洞结构地震表征的精度、可靠性以及工作效率。
附图说明
[0024]为了更清楚地说明本专利技术的实施方式或实施效果,本说明书中提供了所需附图,下面对所使用附图做出说明:
[0025]图1是本说明书所述的一种基于深度学习的碳酸盐岩断缝洞结构地震表征方法的
流程示意图;
[0026]图2是本说明书提供的一个实施例中用于断裂地震识别的三维编解码器深度学习框架内部结构可视化示意图;
[0027]图3是本说明书提供的一个实施例中利用常规识别方法表征的断缝洞结构图;
[0028]图4是本说明书提供的一个实施例中利用本专利技术方法表征的断缝洞结构示意图;
[0029]图5是本说明书提供的一个实施例中用实钻井验证本专利技术方法表征的断缝洞结构剖面示意图。
具体实施方式
[0030]本专利技术通过对断控岩溶缝洞体特征及地震资料特征分析,分类型对断、缝、洞进行地震识别,并利用深度学习方法提高断、缝、洞的识别精度,最终通过融合显示的方法实现对断缝洞结构的地震表征。为了更好的说明本专利技术的技术方案,下面结合附图本文档来自技高网...
【技术保护点】
【技术特征摘要】
1.一种基于深度学习的碳酸盐岩断缝洞结构地震智能表征方法,其特征在于以下步骤:步骤1,考虑研究区地质与地震资料特征,采用实际资料与模拟数据相结合的方法,分类构建断、缝、洞训练数据集:步骤1.1,构建三维模拟断裂及正演地震数据集;步骤1.2,构建三维模拟溶洞及正演地震数据集;步骤1.3,构建测井解释裂缝及井旁三维地震数据集;步骤2,分类建立并训练断、缝、洞识别深度学习模型:步骤2.1,将断裂识别作为三维图像分割问题,以三维正演地震数据作为输入,以三维模拟断裂数据作为标签,搭建三维卷积编解码器深度学习架构,将断裂数据集分为训练集、验证集、测试集,反复对三维卷积编解码器进行训练、测试,不断优化模型参数;步骤2.2,将溶洞识别作为三维图像分割问题,以三维正演地震数据作为输入,以三维模拟溶洞数据作为标签,搭建三维卷积编解码器深度学习架构,将溶洞数据集分为训练集、验证集、测试集,反复对三维卷积编解码器进行训练、测试,不断优化模型参数;步骤2.3,将裂缝识别作为回归拟合问题,以三维井旁地震数据作为输入,以地震数据对应的测井识别裂缝数据作为标签,搭建三维卷积网络深度学习架构,将裂缝数据集分为训练集、验证集、测试集,反复对模型进行训练、测试,不断优化模型参数;步骤3:将已完成训练的断、缝、洞深度学习模型,分别应用于实际研究区三维地震数据,实现断、缝、洞分类预测;步骤4:将断、缝、洞地震分类预测结果进行融合,在平面、剖面、三维空间表征断缝洞结构。2.根据权利要求1所述的一种基于深度学习的碳酸盐岩断缝洞结构地震表征方法,其特征在于,所述步骤1.1中,三维模拟断裂数据包括不同倾角、倾向、断距、组合的断裂,在此基础上采用三维褶积叠加随机噪声生成断裂正演模拟三维地震数据。3.根据权利要求1所述的一种基于深度学习的碳酸盐岩断缝洞结构地震表征方法,其特征在于,所述步骤1.2中,三维模拟溶洞数据包括不同洞长、洞高、宽高比的椭球状溶洞,采用序贯高斯法随机模拟溶洞...
【专利技术属性】
技术研发人员:张国印,林承焰,任丽华,孔凡静,李辉,
申请(专利权)人:中国石油大学华东,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。