一磁光记录媒体包括一移动畴壁的畴壁位移层(1),存储信息的记录层(3)和一开关层(2),该开关层布置在所述的畴壁位移层和所述的记录层之间,并显示低于所述的畴壁位移层和所述的记录层的居里温度的居里温度。畴壁位移层,开关层和记录层,在不高于开关层的居里温度的温度处,由交换耦合耦合起来。畴壁位移层的饱和磁化和记录层的饱和磁化,在紧靠开关层的居里温度的温度通过交换耦合耦合起来的状态中,相互反平行。该磁光记录媒体可以再现信号,消除畴壁位移的起动点的波动并抑制抖动。(*该技术在2022年保护过期,可自由使用*)
【技术实现步骤摘要】
本专利技术涉及适于再现信息的磁光媒体,利用温度梯度造成的畴壁位移,并且也涉及一用于这一媒体的再现方法。一般地,光记录媒体的线性记录密度依赖于再现光系统的激光波长和物镜的数值孔径NA。换句话说,束腰的直径由该再现光系统的激光波长和物镜的数值孔径NA确定。那么,可用于信号再现的记录坑的空间频率最大是2NA/λ。所以,有必要将短激光波长用于再现光系统以及增大物镜的数值孔径以在传统的光盘中实现高的记录密度。然而,从设备工作效率和产生热的问题的角度看,减小激光波长不容易。另外,随着物镜数值孔径的增大,因为浅焦深及其它原因,对设备的机械精度有更多的严格要求。考虑到这些问题,人们开发了各种各样的所谓的超分辨技术,这些技术从记录媒体上为信号的再现提供新颖的构型,以便提高记录密度而不改变激光波长和数值孔径。例如,日本公开专利申请第3-93058号提出一信号再现方法,该方法使用一多层膜,该膜含有一信号记录在其中的记忆层和一读出层,这两层相互磁耦合起来,并且该方法通过首先调准读出层的磁化方向,随后用激光束辐射加热读出层,能传递来自记忆层的被记录的信号,以便信号可传到读出层的被加热的区域,同时读出被传递的信号。这一方法可以减少信号再现期间符号间(inter-symbol)干扰,并以大于2NA/λ的空间频率再现信号,因为,通过用激光束加热直到该区域达到信号转换温度以从该区域取出记录信号的区域可限制成一小于信号再现激光束的斑点直径的范围。然而,上面提出的信号再现方法有一缺点,即有效地用于信号探测和信号检索的区域小于信号再现激光束的光斑直径,由此再现的信号显示出仅仅一小的振幅和一小的输出电平。换句话说,有效地用于信号探测的区域相应于光斑直径不能过分地减小。这样,已提出的方法不能明显地提高相对于理论上由光系统的衍射所限制的记录密度。为了解决上面的问题,日本公开专利申请第6-290496号公开了一方法,该方法通过将沿每一记录标记(磁畴)定位的畴壁沿记录媒体中产生的温度梯度移到高温侧而将以超过光学系统的分辨能力的高密度记录的信号取出而不降低再现信号的振幅。下面将较详细地描述这一信号再现方法。附图的图8A到8C示意说明公开在上面提到的专利文件中的磁光记录媒体和用于这种磁光记录媒体的信息再现方法。图8A是表明磁光记录媒体构型和一区域的磁化情形的示意横截面图,该区域用一信号再现光束照射,图8B是说明当用光束照射时产生在磁光记录媒体中的温度分布图,而图8C是说明畴壁位移层的畴壁能密度σ的分布图,其相应于图8B的温度分布。如图8A所示,磁光记录媒体的磁性层有一多层结构,该多层结构通过顺次布置磁性层111 112和113形成,层111是一畴壁位移层,112是开关层,113是记忆层,其中磁性层111安排在被信号再现光束照射的一侧。在图8A中,层中的箭头114表示原子的自旋方向。每一畴壁115形成在沿两区域的界面部分,原子自旋的各自方向114在这两个区域正好相反。在图8A中,箭头118表示记录媒体移动的方向。当记录媒体在移动方向118移动时,光束斑点116沿记录媒体的信息轨道移动。如图8B所示,当从光束移动方向看时用光束斑点116照射的区域的温度T自该斑点的前部升高以产生一温度分布,在该温度分布中,温度在位置Xc到达峰值,也要注意在位置Xa该媒体达到温度Ts,温度Ts接近磁性层112的居里(Curie)温度。如图8C所示,磁性层111的畴壁能量密度σ的分布在位于光束斑点116的尾端附近的温度峰值附近到达最低值并朝着斑点前端方向逐渐地上升,。当畴壁能量密度σ沿可变位置X显示一梯度时,在位置X的每一层的畴壁受到力F的作用,力F由下面的公式(1)定义。F=∂σ/∂X---(1)]]>施加F使得朝较低的畴壁能量区域移动畴壁。因为磁性层111的畴壁矫顽力很小并且畴壁容易被一大范围移动,所以,当磁性层是单层结构时,畴壁115将容易地被力F移动。然而,媒体的温度低于Ts,磁性层111通过交换耦合耦合到磁性层113,层113在相对于斑点位于位置Xa前面的区域中显示一大的畴壁矫顽力,以致于畴壁115不能被位移,而严格地保持在相当于有大矫顽力的磁性层113中畴壁的位置。借助这种磁光记录媒体,随着它在适当方向118上的移动及磁性层111的畴壁115到达位置Xa,在畴壁115处的媒体的温度上升到Ts,该温度接近磁性层112的居里温度,以打破磁性层111和113间的交换耦合。结果,磁性层111的畴壁115立即被位移向一显示较高温度和较小的畴壁能密度的区域,如断续箭头117所示。当畴壁115在光束斑点116下面穿过时,磁性层111的原子自旋被强制指向同一方向。由于媒体的运动每次畴壁到达位置Xa,它立即在光束斑点16下面穿过,以扩大记录磁畴从位置Xa伸展到位置Xc,并强制磁性层111的原子自旋指向同一方向。然后,被取出的信号不断地显示最大可能的幅值,而不被已记录信号的畴壁间的长度(或记录痕迹的长度)所限,并且完全摆脱了波形干涉的问题,这种干涉是由光的衍射限和其它问题引起的。然而,借助于上面描述的根据日本公开的专利申请第6-290496的信号再现方法,如图8C所示在接近Ts的温度,引起畴壁位移需要的力F不特别大。这样,畴壁位移的起始点可能波动而对取出的信号产生大的抖动,这样可能降低取出的信号的质量。在本专利技术的一个方面中,提供的磁光记录媒体包括一畴壁位移层,用于移动畴壁;一记录层,用于储存信息;一开关层,该层安排在畴壁位移层和记录层之间,并且有一低于畴壁位移层和记录层的居里温度。其中畴壁位移层,开关层和记录层在不高于开关层的居里温度的温度处,通过交换耦合耦合起来,畴壁位移层的饱和磁化和记录层的饱和磁化,在接近开关层的居里温度的温度,通过交换耦合而耦合起来的状态中相互反平行。在本专利技术的另一方面中,提供一借助于上面的磁光记录媒体而使用的再现方法,包括用激光束形成预定的温度分布,该温度分布含有一超过磁光记录媒体上的开关层的居里温度的温度区;在一含有超过开关层的居里温度的温度区的区域,打断在畴壁位移层和记录层之间的交换耦合,该形成在所述畴壁位移层中的畴壁沿着该温度分布的温度梯度朝向高温侧位移;利用从媒体上反射的激光束探测储存在记录层的信息。附图说明图1B是一曲线,说明当被信号再现光束照射时,产生在图1A中的磁光记录媒体上的温度分布。图1C是一曲线,说明相应于图1B的温度分布的畴壁位移层的畴壁能量密度6和作用在畴壁上的力F1的分布。图1D是一曲线,说明相应于图1B的温度分布的畴壁位移层和记录层饱和磁化分布。图1E是一曲线,说明图1A中的静磁力分布。图2A是一典型的被记录磁畴的示意图解说明,这些畴壁形成在记录层中。图2B是一曲线,示意说明基于示于图1A到图1E的信息再现原理再现自磁畴的信号波形。图2C是一曲线,示意说明通过已知的再现方法再现自磁畴的一信号波形。图3是一记录/再现装置的光学系统示意图解说明,该装置能将数据记录在磁光记录媒体并从磁光记录媒体再现数据,该磁光记录媒体图解说明在图1A到图1E中。图4是例1的磁光记录媒体的示意横截面图,说明它的多层结构。图5A是比较例1的磁光记录媒体的示意横截面本文档来自技高网...
【技术保护点】
一磁光记录媒体包括: 一畴壁位移层,用于移动畴壁; 一记录层,用于储存信息;以及 一开关层,布置在所述的畴壁位移层和所述的记录层之间,并有低于所述的畴壁位移层和所述的记录层的居里温度的居里温度, 其中,所述的畴壁位移层,所述的开关层和所述的记录层,在不高于所述开关层的居里温度的温度下,通过交换耦合而耦合,所述畴壁位移层的饱和磁化和所述记录层的饱和磁化,在接近所述开关层的居里温度的温度下由交换耦合而耦合在一起的状态中,相互反平行。
【技术特征摘要】
JP 2001-1-12 004851/20011.一磁光记录媒体包括一畴壁位移层,用于移动畴壁;一记录层,用于储存信息;以及一开关层,布置在所述的畴壁位移层和所述的记录层之间,并有低于所述的畴壁位移层和所述的记录层的居里温度的居里温度,其中,所述的畴壁位移层,所述的开关层和所述的记录层,在不高于所述开关层的居里温度的温度下,通过交换耦合而耦合,所述畴壁位移层的饱和磁化和所述记录层的饱和磁化,在接近所述开关层的居里温度的温度下由交换耦合而耦合在一起的状态中,相互反平行。2.根据权利要求1的一记录媒体,其中形成所述的畴壁位移层以使在所述的开关层的居里温度及其附近它的稀土子晶格磁化占主导地位,而形成所述的记录层,以使在所述的开关层的居里温度及其附近它的过渡金属子晶格磁化占主导地位。3.根据权...
【专利技术属性】
技术研发人员:青木由香里,
申请(专利权)人:佳能株式会社,
类型:发明
国别省市:JP[日本]
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。