本发明专利技术公开了一种块体纳米多孔金属的构筑方法,属于金属材料技术领域。构筑块体纳米多孔金属的过程为:首先准备前驱体合金粉末,粉末粒径为0.1~100μm;将前驱体合金粉末浸入脱合金腐蚀液中,腐蚀掉其中的较活泼组元,得到纳米多孔金属粉末;纳米多孔金属粉末置于烧结设备内,依据所需的空隙率及孔棱尺寸,选择合适的温度及压力,烧结制备出块体纳米多孔金属。所得纳米多孔金属可保持完整性,样品宏观尺寸大,内部无裂纹,结构可调控,孔棱直径尺寸为50
【技术实现步骤摘要】
一种块体纳米多孔金属的构筑方法
[0001]本专利技术涉及金属材料
,具体涉及一种块体纳米多孔金属的构筑方法。
技术介绍
[0002]纳米多孔金属是具有纳米尺寸孔棱和孔洞的材料,其具有独特的双连续结构,具有比表面积大、催化活性强、相对密度低等特点,在催化、驱动、传感、电极材料等方面广泛应用。
[0003]脱合金化法用来制备纳米多孔金属,是利用合金中不同组元间的化学性质不同,选择性地将其中较为活泼的组元去除,得到由残留惰性组元构成的多孔结构。脱合金法已经成功制备出纳米多孔Au、Pt、Ag等多孔材料。但是,目前直接利用块体前驱体材料脱合金,制备出的纳米多孔金属主要存在以下问题:(1)制备块体纳米多孔金属所需时间长,制备效率低,且难以制备出厘米级别的大块样品;(2)除Au、Pt等贵金属以外,利用脱合金法制备的块体纳米多孔金属都存在大量裂纹,力学性能极差,甚至难以形成一个完整的块体;(3)纳米多孔金属的孔隙率以及微观结构受限于前驱体合金的化学成分,难以进行调控。
[0004]随着科学技术的进步和生产工艺的发展,纳米多孔金属面临着大型化、结构可调控化等发展趋势,如何构筑大块无裂纹的纳米多孔金属是急需解决的问题。因此,寻求一种简单的制备工艺,操作简单,制备出的样品稳定可靠,可以获得孔隙率以及拓扑学结构可调控的块体纳米多孔金属,需要不断地探索研究。
技术实现思路
[0005]针对目前制备的纳米多孔金属样品尺寸较小、裂纹萌生不可控、材料种类受限等问题,本专利技术的目的在于提供一种构筑无裂纹块体纳米多孔金属的方法,本专利技术制备的纳米多孔金属的孔棱尺寸在纳米尺度,制备方法简单方便,操作简单,对纳米多孔金属的制备、理论研究和应用有重要意义。
[0006]为实现上述目的,本专利技术所采用的技术方案如下:
[0007]一种块体纳米多孔金属的构筑方法,该方法包括如下步骤:
[0008](1)准备前驱体材料,所述前驱体材料为合金粉末,合金粉末中包括活泼组元和惰性组元;
[0009](2)将前驱体合金粉末浸入脱合金腐蚀液中,反应腐蚀掉前驱体合金中的活泼组元,得到由剩余的惰性组元构成的纳米多孔金属粉末;
[0010](3)将步骤(2)所得纳米多孔金属粉末进行干燥处理后置入烧结设备内,在保护气氛或真空条件下进行烧结处理,烧结后即获得所述块体纳米多孔金属。
[0011]步骤(1)中,所述前驱体材料为粒径0.1~100μm的合金粉末,合金粉末中惰性组元的原子百分比为10
‑
50%;所述前驱体合金粉末中的惰性组元能够稳定存在于脱合金腐蚀液中,活泼组元则能够被脱合金腐蚀液溶解去除。
[0012]所述前驱体材料为由惰性组元和活泼组元所构成的合金粉末,惰性组元为Ni、Cu
和Ag中的一种或几种,活泼组元为Mn、Al、Zn和Mg中的一种或几种。
[0013]步骤(3)中,烧结过程中施加0.5
‑
100MPa压力,以利于纳米多孔粉末的烧结成形及调控一定的孔隙率;烧结过程由高纯氩气或真空保护,防止纳米多孔粉末的氧化。
[0014]本专利技术所制备的纳米多孔金属可保持完整性,样品任意方向的尺寸不小于2mm,能达到厘米级,孔隙率为20
‑
80%,孔棱尺寸为50
‑
1000nm。
[0015]本专利技术设计机理如下:
[0016]1、现有采用脱合金法制备块体纳米多孔金属时,多采用块体前驱体材料直接脱合金,本申请首次采用前驱体合金粉末脱合金,再将脱合金后的多孔粉末进行烧结,从而制备块体纳米多孔金属。
[0017]2、本专利技术在构筑纳米多孔金属的全过程中,由于前驱体合金粉末的粒径较小,脱合金制备纳米多孔粉末所需时间短,且后续烧结时间更短,整体上制备块体纳米多孔金属的效率高。
[0018]3、本专利技术在纳米多孔合金粉末烧结过程中,通过对烧结温度和压力进行控制,使制备的块状纳米多孔金属具有完整性并保持多孔结构,并可以通过控制前驱体合金成分、烧结温度、所施加压力等,来调整所得到纳米多孔金属的种类及微观结构(如孔隙率、孔棱尺寸大小等)。
[0019]本专利技术的优点及有益效果如下:
[0020]1、本专利技术制备出了没有裂纹、结构均匀性好的块体纳米多孔金属。采用本专利技术制备的纳米多孔金属可保持完整性,孔棱尺寸约在50
‑
1000nm范围。
[0021]2、本专利技术制备的纳米多孔金属的样品尺寸仅取决于烧结时所用的模具大小,可达到厘米级别,远高于其它现有方法所制备的纳米多孔金属样品尺寸。
[0022]3、本专利技术制备纳米多孔金属的工艺简单可靠,便于操作,可在较短时间内制备大量块体样品,生产效率高。
[0023]4、本专利技术制备的纳米多孔金属保持完整性,孔隙率、孔棱尺寸大小等可通过控制前驱体合金成分、烧结温度、所施加压力等来调节。
附图说明
[0024]图1为本专利技术构筑块体纳米多孔金属的示意图。
[0025]图2为前驱体Mn
‑
Cu合金粉末、纳米多孔Cu粉末及块体纳米多孔Cu的实物照片。
[0026]图3为纳米多孔Cu粉末(颗粒)及烧结后的纳米多孔Cu的扫描电镜图;其中:(a)去合金得到的纳米多孔Cu颗粒整体形貌图;(b)纳米多孔Cu粉末的断面放大图;(c)400℃、2.5MPa烧结后的纳米多孔Cu形貌图;(d)400℃、10MPa烧结后的纳米多孔Cu形貌图;(e)400℃、20MPa烧结后的纳米多孔Cu形貌图;(f)烧结后纳米多孔Cu的高倍形貌图。
[0027]图4为不同温度下烧结制备的纳米多孔Cu断面形貌图。
具体实施方式:
[0028]下面结合附图和具体实施案例对本专利技术进一步说明。
[0029]以下实施例中所述前驱体材料合金粉末可采用气雾化喷粉工艺制备,制备过程为:将合金中各元素对应的原材料混合,炼制母合金待用;母合金加热融化至液态,利用高
压氩气将其雾化,冷凝形成合金粉末。
[0030]实施例1:
[0031]本专利技术提供了一种构筑块体纳米多孔金属的方法,如图1所示,具体是按照以下步骤实施:
[0032]1.准备前驱体材料;前驱体材料为可脱合金制备纳米多孔结构的合金粉末,如Mn
‑
Ni、Mn
‑
Cu、Al
‑
Cu、Mg
‑
Ag等,这些合金粉末可在酸性水溶液中分别腐蚀去除活泼组元Mn、Al、Mg,并自组装形成纳米多孔Ni、Cu、Ag等;本实施例中选取的是由气雾化喷粉制备而成的Mn
58
Cu
42
(at.%)合金粉末,粒径为5~40μm,如图2。
[0033]2.制备纳米多孔金属粉末:将合金粉末置于充分含量的脱合金腐蚀液中,并利用磁转子对溶液进行搅拌,使粉末中的活泼组元Mn全部溶解;本实施例中选取的脱合金腐蚀液为0.05mol/L的稀硫酸。
[0034]3本文档来自技高网...
【技术保护点】
【技术特征摘要】
1.一种块体纳米多孔金属的构筑方法,其特征在于:该方法包括如下步骤:(1)准备前驱体材料,所述前驱体材料为合金粉末,合金粉末中包括活泼组元和惰性组元;(2)将前驱体合金粉末浸入脱合金腐蚀液中,反应腐蚀掉前驱体合金中的活泼组元,得到由剩余的惰性组元构成的纳米多孔金属粉末;(3)将步骤(2)所得纳米多孔金属粉末进行干燥处理后置入烧结设备内,在保护气氛或真空条件下进行烧结处理,烧结后即获得所述块体纳米多孔金属。2.根据权利要求1所述的块体纳米多孔金属的构筑方法,其特征在于:步骤(1)中,所述前驱体材料为粒径0.1~100μm的合金粉末,合金粉末中的惰性组元的原子百分比为10
‑
50%。3.根据权利要求1所述的块体纳米多孔金属的构筑方法,其特征在于:所述前驱体合金粉末中的惰性组元能够稳定存在于脱合金腐蚀液中,活泼组元则能够被脱合金腐蚀液溶解去除。4.根据权利要求3所述的块体纳米多孔金属...
【专利技术属性】
技术研发人员:金海军,解辉,邵军超,王力,
申请(专利权)人:中国科学院金属研究所,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。