一种单光束飞秒激光测量空气中污染物气体浓度的检测装置和检测方法。该装置中线偏振飞秒激光经过四分之一波片,变成圆偏振光。圆偏振飞秒激光激发污染物的振动相干性,并激发空气中的氮气分子产生窄带的皮秒激射信号。该激射信号作为探测光,经过相干激发的污染物分子后,诱导振动拉曼散射。通过测量污染物相干拉曼散射信号的强度,反推得到待测污染物的种类与浓度。本发明专利技术具有检测装置简单、信噪比高和适合远程测量的特点。和适合远程测量的特点。和适合远程测量的特点。
【技术实现步骤摘要】
单光束飞秒激光测量空气中污染物浓度的检测装置和检测方法
[0001]本专利技术涉及气体检测领域,特别是一种空气中气体污染物浓度的检测装置和检测方法。
技术介绍
[0002]目前,基于飞秒激光的气体检测技术主要包括:激光诱导荧光技术、非线性白光雷达技术和飞秒
‑
皮秒相干拉曼散射技术。激光诱导荧光技术和非线性白光雷达技术分别是通过测量气体的特征荧光和背向散射的白光吸收谱获得气体种类和浓度的信息(可参阅H.Xu et al.,Appl.Phys.Lett.90,101106(2007)和J.Kasparian et al.,Science 301,61
‑
64(2003))。荧光和散射光都是非相干光,探测信号随传输距离的增加平方衰减,具有信噪比差、灵敏度低等缺点。飞秒
‑
皮秒相干拉曼散射技术,作为一种相干探测技术,具有很好的方向性(可参阅D.Pestov et al.,Science 316,265
‑
268(2007)),但是至少需要飞秒和皮秒两束激光,并且要求两束光空间重叠、时间延迟精确可控,因此装置复杂、稳定性较差。
技术实现思路
[0003]为了克服现有技术的不足,本专利技术旨在提供一种空气中污染物浓度的检测装置和检测方法,通过采用单独一束飞秒激光进行相干测量,装置更简单,采集的信号信噪比更高,有利于低浓度气体的测量,而且信号的方向性更好,利于远程测量。
[0004]本专利技术技术解决的基本思想是:
[0005]圆偏振飞秒激光激发污染物的振动相干性,并激发空气中的氮气分子产生窄带的激射信号。该激射信号具有皮秒的脉冲宽度,经过相干激发的污染物分子后,可以诱导振动拉曼散射。通过测量污染物相干拉曼散射信号的强度,反推得到待测污染物的种类与浓度。利用飞秒激光激发空气分子产生的激射信号为皮秒探测光,克服了飞秒
‑
皮秒相干拉曼散射技术中双光束设计的装置复杂、稳定性差等缺点。
[0006]本专利技术的技术解决方案如下:
[0007]一种空气中污染物浓度的检测装置,其特点在于,包括:近红外飞秒激光器、四分之一波片、聚焦透镜、气腔、准直透镜、滤波片、收集透镜和光栅光谱仪;所述的气腔内充有待测气体和标准空气,所述的滤波片为在相干拉曼信号波段具有高透过率的窄带滤波片;
[0008]所述的近红外飞秒激光器输出的线偏振飞秒激光经过四分之一波片,转化成圆偏振飞秒激光,该圆偏振飞秒激光经所述的聚焦透镜会聚后,经所述的气腔出射的光依次经过准直透镜和滤波片,获得污染物振动拉曼信号,该污染物振动拉曼信号经收集透镜聚焦到光栅光谱仪。
[0009]利用上述的装置测量污染物浓度的方法,包括下列步骤:
[0010]1)打开接入气腔的微调阀,将1个大气压的标准空气(N2:80%,O2:20%)和待测污染物气体充入气腔),并通过微调阀控制污染物的浓度;
[0011]2)启动所述的近红外飞秒激光器,输出飞秒激光;
[0012]3)调节四分之一波片的角度,使得线偏振飞秒激光转化成圆偏振光;
[0013]4)圆偏振飞秒激光经过聚焦透镜聚到充有待测气体和标准空气的气腔,出射的光经过准直透镜和滤波片,获得污染物振动拉曼信号;
[0014]5)拉曼信号经过收集透镜聚焦到光栅光谱仪的狭缝,利用光栅光谱仪对污染物相干拉曼散射信号进行采集和光谱分析;
[0015]6)通过微调阀改变气腔中污染物的浓度,并使用光栅光谱仪测量不同污染物浓度下拉曼信号的强度,对测量结果进行平方拟合,得到拉曼信号强度与污染物浓度的拟合关系式;测量氮气激射信号的强度与污染物浓度的关系,确保改变污染物浓度时激射信号基本保持不变;
[0016]7)利用标定的污染物浓度和相干拉曼散射信号的关系式,反推得到污染物的浓度信息。
[0017]本专利技术的技术效果如下:
[0018]1)本专利技术采用单光束飞秒激光产生相干拉曼散射信号,具有实验装置简单、稳定性好的优点。
[0019]2)本专利技术采用圆偏振飞秒激光,可以有效降低飞秒激光产生的超连续白光背景,产生的拉曼信号具有很高的信噪比。
[0020]3)本专利技术测量污染物的相干拉曼散射信号,由于该信号具有很好的方向性,具有适合远程测量的优点。
附图说明
[0021]图1是单光束飞秒激光测量空气中污染物浓度的装置示意图。
[0022]其中:1为近红外飞秒激光器,2为四分之一波片,3为聚焦透镜,4为气腔,5为准直透镜,6为滤波片,7为收集透镜,8为光栅光谱仪。
具体实施方式
[0023]为了使本专利技术的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本专利技术进行进一步详细说明,但不应以此限制本专利技术的保护范围。
[0024]请参阅图1,图1是本专利技术实现单光束飞秒激光测量空气中污染物浓度的的检测装置示意图。如图所示,包括近红外飞秒激光器1、四分之一波片2、聚焦透镜3、气腔4、准直透镜5、滤波片6、收集透镜7和光栅光谱仪8。近红外飞秒激光器1输出的飞秒激光方向插入四分之一波片2,将线偏振光转化成圆偏振光。使用圆偏振飞秒激光作为泵浦光可以产生氮气激射,并能够有效减弱超连续白光背景,从而提高拉曼信号的信噪比。通过优化聚焦透镜3的焦距,得到最强的相干拉曼散射信号,有利于低浓度污染物气体的测量。此外,在光路中还设置了滤光片6,滤波片(6)选用只对拉曼信号波段高透的窄带滤波片,滤波片6可以滤除近红外泵浦激光和超连续白光,有利于实现低浓度污染物的测量。
[0025]本专利技术所述检测装置对污染物浓度测量的原理如下:
[0026]近红外飞秒激光器输出的线偏振飞秒激光经过四分之一波片转化成圆偏振光。圆偏振飞秒激光与气体作用产生热电子,通过热电子碰撞激发产生氮气激射信号。该激射信
号来源于C3Π
u
(v
’
=0)态到B3Π
g
(v=0)态的电子跃迁。本质上,该激射信号为放大自发辐射,是由处于基态的氮气分子和圆偏振飞秒激光产生的热电子碰撞而产生粒子布居数反转而产生的。该激射信号具有窄的频谱宽度和数皮秒的脉冲宽度。圆偏振飞秒激光同时激发污染物分子的振动相干性,产生频率为Ω的振动声子,而产生的频率为ω0的氮气激射则作为探测光,经过相干激发的污染物分子后,产生相干振动拉曼散射。该相干振动拉曼辐射的频率为ω0-Ω或者ω0+Ω,前者为相干斯托克斯拉曼散射,后者为相干反斯托克斯拉曼散射。
[0027]对于相干拉曼散射,其信号强度I与污染物的浓度ρ成二次方关系,即
[0028]I=aρ2,
[0029]其中,a为系数。
[0030]因此,通过测量几个不同污染物浓度下相干拉曼散射信号的强度,便可以拟合得到系数a。利用标定后的上述公式,根据测得的污染物拉曼信号强度,便可以反推得到待测污染物的浓度。
[0031]本实施方式的步骤如下:
[0032]1)打开接入气腔的微调本文档来自技高网...
【技术保护点】
【技术特征摘要】
1.一种空气中污染物浓度的检测装置,其特征在于,包括:近红外飞秒激光器(1)、四分之一波片(2)、聚焦透镜(3)、气腔(4)、准直透镜(5)、滤波片(6)、收集透镜(7)和光栅光谱仪(8);所述的气腔(4)内充有待测气体和标准空气,所述的滤波片(6)为在相干拉曼信号波段具有高透过率的窄带滤波片;所述的近红外飞秒激光器(1)输出的线偏振飞秒激光经过四分之一波片(2),转化成圆偏振飞秒激光,该圆偏振飞秒激光经所述的聚焦透镜(3)会聚后,经所述的气腔(4)出射的光依次经过准直透镜(5)和滤波片(6),获得污染物振动拉曼信号,该污染物振动拉曼信号经收集透镜(7)聚焦到光栅光谱仪(8)。2.利用权利要求1所述的空气中污染物浓度的检测装置进行气中污染物浓度的测量方法,其特征在于,该方法包括如下步骤:1)打开气腔的微调阀,将1个大气压的标准空气(N2:80%,O2:20%)和待测污染物气...
【专利技术属性】
技术研发人员:程亚,姚金平,张方波,谢红强,张志豪,万悦芯,付博涛,于书鹏,乔玲玲,徐至展,
申请(专利权)人:中国科学院上海光学精密机械研究所,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。