当前位置: 首页 > 专利查询>四川大学专利>正文

一种基于电压片段的锂电池健康状态估计方法技术

技术编号:29674810 阅读:20 留言:0更新日期:2021-08-13 21:57
本发明专利技术公开了一种基于电压片段的锂电池健康状态估计方法,可以准确的预测退役动力锂电池的健康状态。本发明专利技术结合了经验模型和数据驱动模型的方法,依托于锂电充放电循环次数实现估计的经验模型转化为数据驱动模型核函数的方式,将经验模型具备的电池电化学特性融入数据驱动模型之中,提升了锂电池健康状态估计的精准度。

【技术实现步骤摘要】
一种基于电压片段的锂电池健康状态估计方法
本专利技术属于锂电池
,具体涉及一种基于电压片段的锂电池健康状态估计方法。
技术介绍
动力锂电池因具备长寿命、高能量密度、无污染和低自放电率等优势,在当前电动交通和储能领域得到了大规模的使用。然而,各领域在动力电池的使用中对其健康状态都有严格的要求。如何准确评估动力电池的健康状态,及时退役处理老化的动力电池,对于维持设备的正常工作以及梯次回收动力电池都有着重要的意义。经过大量的离线测试,建立动力锂电池的经验模型,是一类被广泛提出的动力锂电池健康状态估计方法。然而,该类方法的测试过程依赖于大量离线测试,不同类型电池的电化学特性有一定差异,即使同一类型的电池,也可能因电池系统的具体设计方不同,而出现性能偏差。再综合考虑因制作工艺导致的锂电池出厂不一致性以及老化测试过程的偏差,经验模型的准确性将受限于所测定的电池类型,面对不同电池的有效性仍有待于进一步探讨。经由离线测试总结而成的锂电池经验模型是一类被广泛研究的动力锂电池的健康状态估计方法,经验模型包含了锂电池的电化学特性信息,能够反应锂电池的老化轨迹。经验模型对电池健康状态的估计主要是依托于电池充放电循环次数。然而,即便是对于同类型的锂电池,其老化情况也会随着使用场景的不同而不同;再者,对于需要退役的锂电池,其充放电次数往往难以量化。因此,实际场景下经验模型对于锂电池健康状态的估计精度比较低。依托于数据本身的数据驱动模型适用于电池的各类使用场景,通过现场测试锂电池本身的特征信息,数据驱动模型便可以对锂电池的健康状态进行较为准确的预测。然而,正因为数据驱动模型只依赖于数据信息的特点,模型的建立并没有考虑电池本身具备的特性,数据模型的预测能力也因此受限。数据驱动模型中,核函数对于模型精度有着决定性的作用。为了进一步提升估计的准确性,本专利技术提出了一种集合经验模型和数据驱动模型的方法,借由将依托于锂电充放电循环次数实现估计的经验模型转化为数据驱动模型核函数的方式,将经验模型具备的电池电化学特性融入数据驱动模型之中,综合两类模型的特点以此实现了两者的结合,有利于锂电池健康状态的精确估计。
技术实现思路
针对现有技术中的上述不足,本专利技术提供的一种基于电压片段的锂电池健康状态估计方法解决了现有技术中对锂电池健康状态的估计精度比较低的问题。为了达到上述专利技术目的,本专利技术采用的技术方案为:一种基于电压片段的锂电池健康状态估计方法,包括以下步骤:S1、从锂电池的充电电压曲线中截取电压片段,并根据电压片段获取锂电池老化特征;S2、基于锂电池充放电循环次数,将经验模型转换为核函数;S3、采集锂电池老化特征的健康状态数据作为训练数据;S4、将核函数引入高斯过程回归模型中,并采用锂电池老化特征及其对应的健康状态数据对高斯过程回归模型进行训练;S5、将待估计寿命的锂电池老化特征输入训练后的高斯过程回归模型,得到锂电池健康状态估计结果。进一步地,所述步骤S1具体为:S1.1、给定电压起始点Ustart和片段时间长度l,在恒流充电过程的电压曲线上截取起点为Ustart且长度为l的电压片段u;其中,u=[u1,u2,...,ul],u1,u2,...,ul均表示电压片段中的电压点,u1=Ustart;S1.2、给定主成分数目,对电压片段u进行主成分分析,得到锂电池老化特征;S1.3、根据步骤S1.1-S1.2所述方法,采集若干锂电池的老化特征;S1.4、采集每个老化特征对应的锂电池健康状态值,并取出一组数据作为测试样本,其他为训练样本;S1.5、根据训练样本,采用梯度下降法训练高斯过程回归模型;S1.6、将测试样本的老化特征输入高斯过程回归模型中,得到锂电池健康状态估计值;S1.7、将锂电池健康状态估计值与测试样本的锂电池健康状态值进行对比,获取预测精度;S1.8、根据步骤S1.4-S1.7所述方法,使每组数据均作为一次测试样本,获取若干预测精度,并取平均值作为最终预测精度;S1.9、重新给定电压起始点Ustart和片段时间长度l,并按步骤S1.1-S1.8所述方法获取最终预测精度;S1.10、判断后一次得到的最终预测精度是否大于前一次,若是,则将此刻高斯过程回归模型的参数作为初始参数,保存此次的电池老化特征及其对应的锂电池健康状态值,否则,返回步骤S1.9。进一步地,所述步骤S1.2具体为:S1.21、给定主成分数目N,对电压片段u进行N维的线性变换,具体为:其中,xi表示第i个降维后的主成分,即第i个老化特征,表示单位向量,T表示转置,i和j表示不同的老化特征,i=1,2,...,N,j=1,2,...,N,表示将电压片段u=[u1,u2,...,ul]降维成第i个主成分xi对应的权重向量。S1.22、根据步骤S1.21所述方法,获取N个电池老化特征,得到老化特征为x=[x1,x2,...,xN]。进一步地,所述步骤S2具体为:S2.1、基于锂电池充放电循环次数,构建锂电池健康状态与充放电循环次数的关系式为:其中,f(·)是带有两个独立变量的非线性方程,S表示锂电池的容量,C表示锂电池的充放电循环次数,d表示微分;S2.2、对步骤S2.1中关系式中两个独立变量进行泰勒展开,具体为:其中,a1和a2分别表示衰减因子和疲劳损伤累计因子;S2.3、根据锂电池未使用时C=0且S=100%,对步骤S2.2求解得到经验模型为:S=k1C+k2eαC+1-k2其中,k1表示第一未知变量,k2表示第二未知变量,α表示第三未知变量;S2.4、采用低维空间中欧几里得距离的平方||·||2代替充放电循环次数C,将经验模型转换为核函数,具体为:其中,k(·)表示核函数,即高维空间中两组特征的距离;||·||表示两个观测点之间的欧几里得距离,x和x'分别表示两组不同的特征,θ1表示第一超参数,θ2表示第二超参数,θ3表示第三超参数;S2.5、采集锂电池的循环次数与健康状态值,并导入经验模型中,采用最小二乘拟合方法获取经验模型的参数值,具体为:其中,δ(·)表示在对应参数下预测值与真实值的平方误差之和,Si'表示第i'次循环中锂电池健康状态的真实值,表示对应参数下第i'次循环中锂电池健康状态的预测值;S2.6、根据经验模型的参数值以及经验模型与核函数之间的关系,获取核函数中超参数的初始值。进一步地,所述步骤S4具体为:S4.1、将核函数引入高斯过程回归模型中;S4.2、根据锂电池老化特征及其对应的健康状态数据,并采用负对数最大似然估计函数对核函数的超参数进行优化,获取优化后的高斯过程回归模型。进一步地,所述步骤S4.2中负对数最大似然估计函数L(θ)具体为:其中,θ表示本文档来自技高网
...

【技术保护点】
1.一种基于电压片段的锂电池健康状态估计方法,其特征在于,包括以下步骤:/nS1、从锂电池的充电电压曲线中截取电压片段,并根据电压片段获取锂电池老化特征;/nS2、基于锂电池充放电循环次数,将经验模型转换为核函数;/nS3、采集锂电池老化特征的健康状态数据作为训练数据;/nS4、将核函数引入高斯过程回归模型中,并采用锂电池老化特征及其对应的健康状态数据对高斯过程回归模型进行训练;/nS5、将待估计寿命的锂电池老化特征输入训练后的高斯过程回归模型,得到锂电池健康状态估计结果。/n

【技术特征摘要】
1.一种基于电压片段的锂电池健康状态估计方法,其特征在于,包括以下步骤:
S1、从锂电池的充电电压曲线中截取电压片段,并根据电压片段获取锂电池老化特征;
S2、基于锂电池充放电循环次数,将经验模型转换为核函数;
S3、采集锂电池老化特征的健康状态数据作为训练数据;
S4、将核函数引入高斯过程回归模型中,并采用锂电池老化特征及其对应的健康状态数据对高斯过程回归模型进行训练;
S5、将待估计寿命的锂电池老化特征输入训练后的高斯过程回归模型,得到锂电池健康状态估计结果。


2.根据权利要求1所述的基于电压片段的锂电池健康状态估计方法,其特征在于,所述步骤S1具体为:
S1.1、给定电压起始点Ustart和片段时间长度l,在恒流充电过程的电压曲线上截取起点为Ustart且长度为l的电压片段u;
其中,u=[u1,u2,...,ul],u1,u2,...,ul均表示电压片段中的电压点,u1=Ustart;
S1.2、给定主成分数目,对电压片段u进行主成分分析,得到锂电池老化特征;
S1.3、根据步骤S1.1-S1.2所述方法,采集若干锂电池的老化特征;
S1.4、采集每个老化特征对应的锂电池健康状态值,并取出一组数据作为测试样本,其他为训练样本;
S1.5、根据训练样本,采用梯度下降法训练高斯过程回归模型;
S1.6、将测试样本的老化特征输入高斯过程回归模型中,得到锂电池健康状态估计值;
S1.7、将锂电池健康状态估计值与测试样本的锂电池健康状态值进行对比,获取预测精度;
S1.8、根据步骤S1.4-S1.7所述方法,使每组数据均作为一次测试样本,获取若干预测精度,并取平均值作为最终预测精度;
S1.9、重新给定电压起始点Ustart和片段时间长度l,并按步骤S1.1-S1.8所述方法获取最终预测精度;
S1.10、判断后一次得到的最终预测精度是否大于前一次,若是,则将此刻高斯过程回归模型的参数作为初始参数,保存此次的电池老化特征及其对应的锂电池健康状态值,否则,返回步骤S1.9。


3.根据权利要求2所述的基于电压片段的锂电池健康状态估计方法,其特征在于,所述步骤S1.2具体为:
S1.21、给定主成分数目N,对电压片段u进行N维的线性变换,具体为:









其中,xi表示第i个降维后的主成分,即第i个老化特征,表示单位向量,T表示转置,i和j表示不同的老化特征,i=1,2,...,N,j=1,2,...,N,表示将电压片段u=[u1,u2,...,...

【专利技术属性】
技术研发人员:孟锦豪黄焕炀蔡磊刘平刘天琪
申请(专利权)人:四川大学
类型:发明
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1