一种古籍图像修复方法、终端设备及存储介质技术

技术编号:29332561 阅读:30 留言:0更新日期:2021-07-20 17:50
本发明专利技术涉及一种古籍图像修复方法、终端设备及存储介质,该方法中包括:S1:构建基于形态学分解的古籍图像恢复模型;S2:利用交替乘子迭代法,引入辅助变量Q

【技术实现步骤摘要】
一种古籍图像修复方法、终端设备及存储介质
本专利技术涉及图像分析领域,尤其涉及一种古籍图像修复方法、终端设备及存储介质。
技术介绍
中华文化底蕴浓厚,遗留古籍众多。浩如烟海的古籍不仅是中华上下五千年文化的传承,更是炎黄子孙宝贵的精神财富。古籍不仅能直观地体现出古代中华的繁荣程度,还能让后世了解到中华文明的发展脉络。但由于历史悠久,导致古籍受到霉变虫蛀等破坏,且古籍保存技术有限,导致大量古籍亟待修复。常见古籍图像修复去除方法有:基于中值滤波的恢复方法、基于全变分模型的恢复方法、基于神经网络的恢复方法、基于小波变换的恢复方法等。基于中值滤波器(MedianFilter,MF)及其改进的恢复算法将污染源用相邻像素点的中值或者均值代替,该方法容易扭曲图像的结构,使图像衔接不顺滑。基于全变分(TotalVariation,TV)模型在图像恢复方面得到了广泛的应用,该方法虽然能较好地保护图像的边缘部分,但在处理图像平滑区域时易产生“阶梯效应”。随着深度学习理论的发展,各种基于神经网络的模型被广泛应用于图像恢复,但该类方法较依赖大样本数据集,训练成本较高。基于小波变换的图像恢复方法将信号视为小波字典的稀疏表示,由于冲击噪声具有随机发生的特点,不能被小波字典稀疏表示,利用这一特点可有效将噪声去除。然而,小波变换中的下采样操作会导致重构信号存在明显的“块效应”,同时小波变换仅有一个高通分析滤波器,对信号纹理细节的刻画能力不足。近年来,基于小波变换的图像恢复方法有了新的研究进展。现有技术中为解决小波变换下采样导致的“块效应”问题,将平稳小波变换应用于图像恢复中;为解决小波变换对细节刻画能力不足的问题,将Framelet变换应用到图像恢复中,该变换相比于小波变换增加一个高通分析滤波器,能更好地刻画信号细节。上述工作通常将被污染图像理解为原始图像和污染源的和,这种做法的弊端在于去除污染源的同时可能破坏图像的高频纹理信息。
技术实现思路
为了解决上述问题,本专利技术提出了一种古籍图像修复方法、终端设备及存储介质。具体方案如下:一种古籍图像修复方法,包括以下步骤:S1:构建基于形态学分解的古籍图像恢复模型:其中,F表示修复后图像,G为待修复古籍图像,为保真项,α0为保真项系数,M为待修复古籍图像的掩码矩阵,D为二维一阶平稳帧小波变换,p0、p1、p2均为Lp伪范数参数,α1、α2为稀疏正则化的系数;FC为图像的卡通部分,FT为图像的纹理部分;S2:利用交替乘子迭代法,引入辅助变量Q0、Q1、Q2,令并引入辅助变量Q0、Q1、Q2对应的拉格朗日乘子二次惩罚项和二次惩罚项系数λ0、λ1、λ2,将对步骤S1中公式的求解转换为对FC、FT、Q0、Q1、Q2、的求解;S3:针对古籍图像恢复模型进行迭代训练,初始设定FC、FT、Q0、Q1、Q2、均为0,在每次迭代中,通过对FC、FT、Q0、Q1、Q2、分别求解来计算当前迭代的修复后图像F,进而计算是否成立,其中,F(k+1)表示第k+1次迭代时的修复后图像,F(k)表示第k次迭代时的修复后图像,上标k表示第k次迭代,tol表示迭代停止阈值,如果成立,则输出当前迭代时的修复后图像F(k+1)。进一步的,FC、FT根据共轭梯度算法对下式进行求解来更新:其中,DT表示帧小波逆变换。进一步的,辅助变量依次根据下式进行更新:进一步的,辅助变量对应的拉格朗日乘子依次根据下式进行更新:其中,γ表示学习率参数。一种古籍图像修复终端设备,包括处理器、存储器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本专利技术实施例上述的方法的步骤。一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本专利技术实施例上述的方法的步骤。本专利技术采用如上技术方案,提出一种基于形态学成分分析和Lp伪范数的古籍图像修复模型,然后引入交替乘子迭代法将提出模型分解为若干去耦合的子问题再进行求解,能够较好地修复古籍图像。附图说明图1所示为本专利技术实施例一中各类范数等高线,其中,图1(a)为L2范数等高线,图1(b)为L1范数等高线,图1(c)为Lp伪范数等高线。图2所示为该实施例中一维一阶平稳帧小波变换与逆变换示意图,其中图2(a)为一维一阶平稳帧小波变换示意图,图2(b)为一维一阶平稳逆帧小波变换示意图。图3所示为该实施例中二维一阶平稳帧小波变换与逆变换示意图,其中,图3(a)为二维一阶平稳帧小波变换示意图,图3(b)为二维一阶平稳逆帧小波变换示意图。图4所示为该实施例中形态学分解的示意图。图5所示为该实施例中方法的流程图。图6所示为该实施例中彩色图像恢复流程图示意图。图7所示为该实施例中“道德经”的涂鸦图与复原图,其中图7(a)为单像素涂鸦图,图7(b)为2像素涂鸦图,图7(c)为3像素涂鸦图,图7(d)为4像素涂鸦图,图7(e)为单像素复原图,图7(f)为2像素复原图,图7(g)为3像素复原图,图7(h)为4像素复原图。具体实施方式为进一步说明各实施例,本专利技术提供有附图。这些附图为本专利技术揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理。配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本专利技术的优点。现结合附图和具体实施方式对本专利技术进一步说明。实施例一:本专利技术实施例提供了一种古籍图像修复方法,包括:1.构建基于形态学分解的古籍图像恢复模型,其目标函数为:其中,是保真项、α0是保真项系数、M是掩码矩阵、G是被污染源污染后的图像、D是二维一阶平稳帧小波变换、p0、p1、p2是Lp伪范数参数。基于形态学分解,将图像分解为卡通部分FC和纹理部分FT,卡通表示图像高频部分,纹理表示图像的低频部分。通过不同的稀疏正则化的系数α1、α2去平衡,将纹理部分和卡通部分分层恢复,使图像该平滑的部分更加平滑,该锐化的部分更加锐化,避免了图像失真、细节模糊等问题,使图像更加生动逼真、细节丰富。下面介绍与本实施例相关的预备知识。(1)Lp伪范数Lp伪范数定义为观察图1各类范数等高线,可以发现L1范数的等高线比L2范数更接近坐标轴,说明L1范数刻画系数能力更强。而Lp伪范数等高线比L1范数更接近坐标轴,说明Lp范数刻画系数能力强于L1范数和L2范数。由此可知Lp伪范数优势为:①刻画稀疏能力更强;②具有更大的自由度。污染源是一种具有稀疏统计特性的污染源,采用Lp伪范数能够更好地描述其稀疏特性。因此,该实施例中将Lp伪范数引入污染源去除模型。(2)平稳帧小波变换图2中,三个分析滤波器组成分析滤波组,其中是低通滤波器,是高通滤波器。三个综合滤波器组成综合滤本文档来自技高网
...

【技术保护点】
1.一种古籍图像修复方法,其特征在于,包括以下步骤:/nS1:构建基于形态学分解的古籍图像恢复模型:/n

【技术特征摘要】
1.一种古籍图像修复方法,其特征在于,包括以下步骤:
S1:构建基于形态学分解的古籍图像恢复模型:



其中,F表示修复后图像,G为待修复古籍图像,为保真项,α0为保真项系数,M为待修复古籍图像的掩码矩阵,D为二维一阶平稳帧小波变换,p0、p1、p2均为Lp伪范数参数,α1、α2为稀疏正则化的系数;FC为图像的卡通部分,FT为图像的纹理部分;
S2:利用交替乘子迭代法,引入辅助变量Q0、Q1、Q2,令并引入辅助变量Q0、Q1、Q2对应的拉格朗日乘子二次惩罚项和二次惩罚项系数λ0、λ1、λ2,将对步骤S1中公式的求解转换为对FC、FT、Q0、Q1、Q2、的求解;
S3:针对古籍图像恢复模型进行迭代训练,初始设定FC、FT、Q0、Q1、Q2、均为0,在每次迭代中,通过对FC、FT、Q0、Q1、Q2、分别求解来计算当前迭代的修复后图像F,进而计算是否成立,其中,F(k+1)表示第k+1次迭代时的修复后图像,F(k)表示第k次迭代时的修复后图像,上标k表示第k次迭代,tol表示迭代停止阈值,如果成立,则输出当前迭代时的修复后图像F(k+1)。

【专利技术属性】
技术研发人员:陈颖频王灵芝黄慧滢喻飞林凡陈育群徐国荣王海光何丽
申请(专利权)人:闽南师范大学
类型:发明
国别省市:福建;35

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1