本发明专利技术公开了一种烧结耐高温隔热材料及其制备方法,属硅酸盐类轻质隔热材料制备方法。由硅质耐火土泥浆与泡沫共混制备轻质陶泥浆料,再在该浆料中加入预制的亲水气凝胶颗粒,混合均匀,经成型干燥后入窑炉,经高温烧结制备。该材料可长时间工作在1100℃的高温环境具有较低导热系数,是窑炉耐火隔热的专用材料,可有效降低窑炉能耗,同时也适用于建筑节能场景。具有工艺设备简单,配方科学合理,适合传统窑炉烧制。经检测导热系数在0.035W/(m·K)到0.065 W/(m·K)之间,表观密度在0.35g/cm
【技术实现步骤摘要】
一种烧结耐高温轻质隔热材料及其制备方法
本专利技术公开了一种烧结耐高温隔热材料及其制备方法,属硅酸盐类轻质隔热材料制备方法。由硅质耐火土泥浆与泡沫共混制备轻质陶泥浆料,再在该浆料中加入预制的亲水气凝胶颗粒,混合均匀,经成型干燥后入窑炉,再经高温烧结制备。该材料可长时间工作在1100℃的高温环境具有较低导热系数,是窑炉耐火隔热的专用材料,可有效降低窑炉能耗,同时也适用于建筑节能场景。具有工艺设备简单,配方科学合理,适合传统窑炉烧制。经检测导热系数在0.035W/(m·K)到0.065W/(m·K)之间,表观密度在0.35g/cm3到1.00g/cm3之间,抗压强度在1.5MPa~5.5MPa之间。
技术介绍
窑炉节能,有窑炉余热利用和窑炉隔热保温两个发展方向,余热利用目前已有多种现有技术,但窑炉隔热保温却需要在耐高温隔热材料上有新的突破。常用的耐高温隔热材料如:轻质耐火砖、硅酸铝棉、岩棉等不是导热系数高就是没有强度。气凝胶毡有理想的导热系数,但在窑炉隔热上使用不但价格太过豪华,而且经试验,这种有机硅制备的气凝胶也难以承受窑炉的高温。在窑炉制造和维护保养中,人们更习惯使用砌筑式的耐火材料和保温隔热材料。在窑炉制造中如果能够在轻质莫来石耐火砖外,砌筑一层耐温1000℃左右,导热系数在0.035W/(m·K)到0.065W/(m·K)之间的隔热材料,窑炉节能会立竿见影。中国专利CN107986815A《一种二氧化硅气凝胶基复合屏蔽层及其制备方法》公开了一种含气凝胶结构的烧结陶瓷制品,“将有机聚氨酯泡沫浸入到二氧化硅陶瓷浆料中,真空浸渍后取出挂有二氧化硅陶瓷浆料的泡沫,均匀挤压后干燥,烧结,然后浸入溶胶中,调节pH值后使二氧化硅泡沫陶瓷内的溶胶凝胶化10min~3h,然后在无水乙醇中进行溶剂交换后进行超临界干燥,得到二氧化硅气凝胶基复合屏蔽层材料。该复合屏蔽层材料为具有微纳米复合孔结构的高强轻质电磁屏蔽材料。二氧化硅泡沫陶瓷中强健的密实孔筋提供了良好的支撑性,填充在孔筋间的纳米孔二氧化硅气凝胶则实现优异电磁屏蔽的介电性能,该材料对芯具有较好的支撑强度,脆性小,制备过程中不易开裂,并具有较好介电性能”。该材料因包含有气凝胶结构,可有效降低导热系数,同时,该材料拥有烧结陶瓷结构,似乎是一种理想的耐高温绝热材料。但仔细研究后发现并非如此。首先,有机硅制备的气凝胶无法承受窑炉中陶瓷烧结的高温,所以该制备方法选择了先烧结陶瓷,最后作超临界干燥的工艺。即便该方法制备的产品可以应用于窑炉低温区的隔热保温,这种工艺步骤也意味着生产单元的超临界干燥设备需要放大,超临界干燥釜必须有足够的空间,以容纳已经烧结的陶瓷制品,这样势必会增加设备投入。假设,通过改变配方,在这种气凝胶能够承受的极限温度下使陶瓷烧结,从而达到改变工艺的目标,使实现预制气凝胶混合在浆料中,实现一步法烧制完成。即使这样,仍然无法改变这种工艺步骤。因为气凝胶密度很低,同时有机硅制备的气凝胶具有憎水性,所以气凝胶组分会漂浮在陶瓷浆料上部,无法混合。价格能够承受,并且可大量生产的烧结耐高温隔热材料CN107986815A的技术方案难以实现。即便勉强能够实现,也意味着生产设备投入高,材料成本难以降低的问题。
技术实现思路
首先,研究了水玻璃经离子交换得到的碱性水溶胶,并以此水溶胶为原料,经溶胶凝胶法得到的,以水玻璃为原料的凝胶,再经超临界干燥得到了以无机硅原为原料制备的气凝胶。其次,研究了这种气凝胶在陶瓷烧结温度下的微观结构变化。选择了以水玻璃为原料生产气凝胶颗粒的方法。该方法使原料成本大幅度降低的同时,实现了硅质耐火陶土烧结温度下,气凝胶结构微观变化不大的目标。同时,研究了这种气凝胶颗粒的亲水特征,选择了以泡沫泥浆为载体,达到了该气凝胶颗粒在陶瓷泥浆中均匀分散的目标。还研究了高含水量泥浆的低成本干燥方法,选择了有遮阳篷的自然环境干燥,降低了干燥能耗。选择了辊道窑为烧结工具,实现了烧结耐高温隔热材料的制备。一种烧结耐高温隔热材料及其制备方法,其产品区别特征是:能长时间工作在1100℃的高温环境,表观密度在0.35g/cm3~1.00g/cm3,抗压强度在1.5MPa~5.5MPa,同时具有0.035W/(m·K)~0.065W/(m·K)的导热系数,其原料区别特征是:使用了水玻璃经离子交换得到的碱性水溶胶为原料、使用了硅质耐火土为原料,其工艺区别特征是:将预制好的氧化硅气凝胶颗粒分散在泡沫泥浆中,该材料由以下7个步骤①预制气凝胶颗粒:碱性二氧化硅水溶胶4~8倍水稀释,滴入稀酸使其凝固,前述凝胶经二氧化碳超临界干燥成气凝胶,将前述气凝胶切割成1mm3~5mm3颗粒备用,②泡沫泥浆制备:硅质耐火土10~25质量份,加入3~15质量份水和0.125~0.25质量分的聚羧酸减水剂,搅拌均匀后加入泡沫,继续搅拌达到预算体积的50%~99%③坯料制备:上述泡沫泥浆中缓慢加入预制好的气凝胶颗粒,继续搅拌达到100%预算体积,④成坯:上述坯料中加入硅质耐火土总质量0.05wt%~0.1wt%的矾土水泥2倍水混合浆,搅拌均匀后入模具,15~30分钟后脱模,⑤干燥:脱模后的坯体在非直射阳光的自然环境中干燥5~15天,⑥烧结:在辊道窑中对上述干燥完成的坯体烧结,烧结温度1050℃~1100℃,烧结时间30~90分钟,⑦降温冷却:随辊道窑降温冷却,得到烧结耐高温轻质隔热材料;上述碱性二氧化硅水溶胶是水玻璃经离子交换后得到的水溶胶;上述稀酸是冰醋酸、盐酸、硫酸、甲酸的水稀释液;上述硅质耐火土是氧化铝含量≤28%的铝矾土;上述聚羧酸减水剂是通用聚羧酸减水剂;上述泡沫是S35、K12、6501、二乙醇胺、月桂醇、月桂酰胺,一种或多种,经40倍水稀释的发泡液经泡沫发生器制备的泡沫;上述矾土水泥是成品硫铝酸盐水泥;上述干燥是在有遮阳篷的室外环境;上述干燥时间为5~15天,上述烧结温度为1050℃~1100℃;上述烧结时间为30~90分钟。检测标准:GB10294绝热材料稳态热阻及有关特性的测定防护热板法;GB/T6343泡沫塑料及橡胶表观密度的测定;GB/T50081普通混凝土力学性能试验方法标准。具体实施例1①制备预制气凝胶颗粒:固含量30%的碱性二氧化硅水溶胶5Kg+水40Kg稀释,前述二氧化硅水溶胶滴入20wt%的冰醋酸使其凝固,前述凝胶经二氧化碳超临界干燥成气凝胶,前述气凝胶切割成5mm3~1mm3颗粒备用,②泡沫泥浆制备:硅质耐火土850Kg+350Kg水+35Kg聚羧酸减水剂,搅拌均匀后开始加入泡沫继续搅拌达到0.9m3③坯料制备:在上述泡沫泥浆中缓慢加入预制好的气凝胶颗粒继续搅拌到均匀,④成坯:称取0.5Kg矾土水泥与1kg水混合均匀,加入上述坯料中搅拌均匀后倒入模具30分钟后脱模,⑤干燥:脱模后的坯体在有凉棚的自然环境中干燥7天,⑥烧结:在辊道窑中对上述干燥完成的坯体烧结,烧结温度1080℃烧结时间40分钟。⑦随辊道窑降温冷却,出窑,得到烧结耐高温轻质隔热材料。具体实施例1检测结果:表观密度0.95g/cm3,抗压强度5.5MPa,导热系数0.055W/(m本文档来自技高网...
【技术保护点】
1. 一种烧结耐高温隔热材料及其制备方法,其产品区别特征是:能长时间工作在1100℃的高温环境,表观密度在0.35g/cm
【技术特征摘要】
1.一种烧结耐高温隔热材料及其制备方法,其产品区别特征是:能长时间工作在1100℃的高温环境,表观密度在0.35g/cm3~1.00g/cm3,抗压强度在1.5MPa~5.5MPa,同时具有0.035W/(m·K)~0.065W/(m·K)的导热系数,其原料区别特征是:使用了水玻璃经离子交换得到的碱性水溶胶为原料、使用了硅质耐火土为原料,其工艺区别特征是:将预制好的氧化硅气凝胶颗粒分散在泡沫泥浆中,该材料由以下7个步骤①预制气凝胶颗粒:碱性二氧化硅水溶胶4~8倍水稀释,滴入稀酸使其凝固,前述凝胶经二氧化碳超临界干燥成气凝胶,将前述气凝胶切割成1mm3~5mm3颗粒备用,②泡沫泥浆制备:硅质耐火土10~25质量份,加入3~15质量份水和0.125~0.25质量分的聚羧酸减水剂,搅拌均匀后加入泡沫,继续搅拌达到预算体积的50%~99%③坯料制备:上述泡沫泥浆中缓慢加入预制好的气凝胶颗粒,继续搅拌达到100%预...
【专利技术属性】
技术研发人员:高建民,徐剑,何彦蓉,李松风,龚小平,
申请(专利权)人:新疆硅质耐火材料有限公司,
类型:发明
国别省市:新疆;65
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。