【技术实现步骤摘要】
一种文本识别方法及系统
本专利技术涉及图像处理领域,尤其涉及一种文本识别方法及系统。
技术介绍
图像处理技术得到了越来越多的应用,如在图像文本识别领域,利用图像识别技术将图像中的文本转换为机器能够识别读取的机器语言,目前,通常使用深度学习算法,进行图像文本识别,然而,由于文本识别过程中存在大量的印刷字体与手写字体,使用较单一的深度学习算法进行文本识别,容易导致文本识别的精确率较低的情况发生。
技术实现思路
本专利技术提供一种文本识别方法及系统,以解决现有技术中使用较单一的深度学习算法进行文本识别,容易导致文本识别的精确率较低的问题。本专利技术提供的文本识别方法,包括:采集图像样本集,所述图像样本集包括:数据来源标签;根据所述数据来源标签,将所述图像样本集输入文本识别网络进行训练,获取文本识别模型,所述文本识别模型包括:手写字体识别模型和印刷字体识别模型;获取待识别图像;将所述待识别图像输入所述文本识别模型进行文本识别,获取文本识别结果;将所述文本识别结果输入语义标签提取模型进行语义标签提取,获取所述文本识别结果中的文本向量的语义标签;根据所述语义标签,对所述文本识别结果进行更新,完成文本识别。可选的,根据所述数据来源标签,将所述图像样本集输入文本识别网络进行训练的步骤包括:根据所述数据来源标签,对所述图像样本集中的图像样本进行分类,获取一个或多个样本子集,所述样本子集与所述数据来源标签相对应,所述数据来源标签至少包括以下之一: ...
【技术保护点】
1.一种文本识别方法,其特征在于,包括:/n采集图像样本集,所述图像样本集包括:数据来源标签;/n根据所述数据来源标签,将所述图像样本集输入文本识别网络进行训练,获取文本识别模型,所述文本识别模型包括:手写字体识别模型和印刷字体识别模型;/n获取待识别图像;/n将所述待识别图像输入所述文本识别模型进行文本识别,获取文本识别结果;/n将所述文本识别结果输入语义标签提取模型进行语义标签提取,获取所述文本识别结果中的文本向量的语义标签;/n根据所述语义标签,对所述文本识别结果进行更新,完成文本识别。/n
【技术特征摘要】
1.一种文本识别方法,其特征在于,包括:
采集图像样本集,所述图像样本集包括:数据来源标签;
根据所述数据来源标签,将所述图像样本集输入文本识别网络进行训练,获取文本识别模型,所述文本识别模型包括:手写字体识别模型和印刷字体识别模型;
获取待识别图像;
将所述待识别图像输入所述文本识别模型进行文本识别,获取文本识别结果;
将所述文本识别结果输入语义标签提取模型进行语义标签提取,获取所述文本识别结果中的文本向量的语义标签;
根据所述语义标签,对所述文本识别结果进行更新,完成文本识别。
2.根据权利要求1所述的文本识别方法,其特征在于,根据所述数据来源标签,将所述图像样本集输入文本识别网络进行训练的步骤包括:
根据所述数据来源标签,对所述图像样本集中的图像样本进行分类,获取一个或多个样本子集,所述样本子集与所述数据来源标签相对应,所述数据来源标签至少包括以下之一:医院名称、科室名称、人名;
将所述样本子集输入所述文本识别网络进行训练,获取文本识别模型,训练过程包括:文本字体分类和手写字体识别,以及印刷字体识别。
3.根据权利要求2所述的文本识别方法,其特征在于,将所述样本子集输入所述文本识别网络进行训练的步骤包括:
将所述样本子集输入所述文本识别网络进行文字特征提取,文字特征提取的步骤至少包括以下之一:分布特征提取、结构形态特征提取,获取分布特征向量和/或结构形态特征向量;
根据所述分布特征向量和/或结构形态特征向量,对样本子集进行文本字体分类,获取字体分类结果,所述字体分类结果包括:手写字体和印刷字体;
将与手写字体对应的分布特征向量和/或结构形态特征向量输入所述文本识别网络的第一识别层进行识别,获取第一识别结果并进行迭代训练,进而获取手写字体识别模型;
将与印刷字体对应的分布特征向量和/或结构形态特征向量输入所述文本识别网络的第二识别层进行识别,获取第二识别结果并进行迭代训练,进而获取印刷字体识别模型。
4.根据权利要求3所述的文本识别方法,其特征在于,获取所述第一识别结果和所述第二识别结果的步骤包括:
将与手写字体对应的分布特征向量与手写字体数据库中的文字特征进行第一对比,获取第一对比结果;
将与手写字体对应的结构形态特征向量与手写字体数据库中的文字特征进行第二对比,获取第二对比结果;
根据所述第一对比结果和/或所述第二对比结果,获取第一识别结果;
将与印刷字体对应的分布特征向量与印刷字体数据库中文字特征进行第三对比,获取第三对比结果;
将与印刷字体对应的结构形态特征向量与印刷字体数据库中文字特征进行第四对比,获取第四对比结果;
根据所述第三对比结果和/或所述第四对比结果,获取第二识别结果。
5.根据权利要求3所述的文本识别方法,其特征在于,将所述样本子集输入所述文本识别网络进行文字特征提取的步骤包括:
根据所述样本子集中的图像样本和预设的区域划分原则,获取一个或多个文字区域;
对所述文字区域进行二值化处理,获取二值化区域;
根据所述二值化区域中的黑色像素点及白色像素点的集合,获取原始图像中的像素点的分布特征向量;
对所述原...
【专利技术属性】
技术研发人员:姚娟娟,钟南山,
申请(专利权)人:明品云北京数据科技有限公司,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。