本发明专利技术公开了一种理论模型与数据融合的钻井机械钻速预测方法,包括:(1)收集基于物理模型的机械钻速方法(2)提取物理模型中的相关参数(3)对相关参数进行重要性排序(4)收集已钻井数据,使用人工智能算法训练机械钻速模型(5)使用训练好的模型预测待钻井机械钻速。本发明专利技术的优点是:兼具物理模型和提高了的适应性、解释性以及稳定性,同时使机械钻速预测方法更加精准。精准预测出的机械钻速可以用来优化钻井参数设计、钻井提速方案优选、钻井周期预测,从而科学地指导生产,具有重要的实际意义。
【技术实现步骤摘要】
一种理论模型与数据融合的钻井机械钻速预测方法
本专利技术涉及石油钻井
,特别涉及一种理论模型与数据融合的钻井机械钻速预测方法。
技术介绍
机械钻速是钻井效率最重要的指标,提高机械钻速可以大幅度节省作业时间、节省钻井费用。精准预测机械钻速可以为钻进时间和钻井成本预估提供依据,从而科学指导钻井生产。现有的机械钻速预测方法大致可以分为三大类:(1)经验法;(2)物理模型法;(3)数据驱动法。经验法是最基础的机械钻速预测方法,它基于钻井工程师对一个特定作业区工况常年累月的经验积累。给定钻压和转速,钻井工程师可以对某口井的机械转速有一个大致的判断,这种方法缺乏理论指导,并且极度依赖作业区内经验丰富的工程师。物理模型法是基于人们对影响机械钻速因素的认识,经过大量已钻井现场数据统计分析,得出这些影响因素与机械钻速的关系,以某种数学表达式的形式体现出来。钻井过程的机械钻速预测难度大、精度低,物理模型机械钻速预测方法虽然是从钻井基本原理角度出发,但它涉及经验系数和拟合能力的限制,通常会导致效果不佳,并且随着复杂油气藏的开发、钻井新工具和工艺的应用,物理模型的适用性面临挑战。数据驱动法是基于机器学习和人工智能算法的机械钻速预测方法,它纯粹的从数据和算法的角度出发预测机械钻速,一定程度上克服了物理物模型适应性低的弱点,但数据驱动的机器学习算法的内部工作是“黑箱”运行,可解释性差,例如无法解释为什么某段机械钻速高、某段机械钻速低?同时还需要收集海量钻井现场各种参数来“投喂”模型,增加了早期开发过程中的难度。专利
技术实现思路
本专利技术针对现有技术的缺陷,提供了一种理论模型与数据融合的钻井机械钻速预测方法,解决了现有技术中存在的缺陷。为了实现以上专利技术目的,本专利技术采取的技术方案如下:一种理论模型与数据融合的钻井机械钻速预测方法,包括以下步骤:1)收集一系列从钻井基本原理出发的机械钻速物理模型,采用公式1或公式2进行,公式1:式中,ROP为机械钻速,m/h;KR为地层可钻性系统;N为转速,r/min;λ为钻速指数;W为钻压,KN;M为门限钻压,KN;h为牙齿磨损量;C2为牙齿磨损系统;Cp为压差影响系数;CH为水力参数影响因素。公式2:式中,ROP为机械钻速,m/h;MSE为机械比能,Kpa;WOB为钻压,KN;Ab为井眼面积,m2;N为转速,r/min,;T为扭矩,KN-m。2)从上述机械钻速物理模型中分别总结归纳出影响机械钻速的相关参数,包括:钻压、转速、排量、扭矩、压差、钻头特性、钻井液性质、水力因素和地层特性;3)采用信息增益算法对每一个物理模型的众多参数进行相关性分析。公式3表示特征“转速N”对训练数据集D的信息增益g(D,N),定义为集合D的经验熵H(D)与特征“转速N”给定条件下D的经验条件熵H(D/A)之差。g(D,N)=H(D)-H(D|N)(3)依次类推,评价每一个特征对于训练数据集D的信息增益值,最终排列出一系列重要特征,挑选相关性较高的特征,筛除相关性较低的特征。4)收集已完钻井的数据,通过对一系列机器学习算法进行优选,最终采用Xgboost算法训练模型。该算法基于决策树算法,通过不断增加决策树的个数从而拟合上一轮模型的预测值与实际值之间的残差,最终训练完成时得到K棵决策树,每棵树会落到对应的一个叶子节点,最后的预测值就是把每个叶子节点上的数值累积求和。5)模型训练完毕后,向模型中投喂待钻井相关特征参数,最终得到待钻井机械钻速预测值。与现有技术相比,本专利技术的优点在于:兼具物理模型和提高了的适应性、解释性以及稳定性,同时使机械钻速预测方法更加精准。精准预测出的机械钻速可以用来优化钻井参数设计、钻井提速方案优选、钻井周期预测,从而科学地指导生产,具有重要的实际意义。附图说明图1是本专利技术实施例钻速预测方法流程图;图2是本专利技术实施例2特征重要性排序图;图3是本专利技术实施例2井机械钻速预测与实测对比图。具体实施方式为使本专利技术的目的、技术方案及优点更加清楚明白,以下根据附图并列举实施例,对本专利技术做进一步详细说明。如图1所示,一种理论模型与数据融合的钻井机械钻速预测方法,包括以下步骤:1)收集一系列从钻井基本原理出发的机械钻速物理模型,其中具有代表性的一类物理模型是杨格钻速方程及其各种形式的修正模型,公式1为杨格钻速方程:式中,ROP为机械钻速,m/h;KR为地层可钻性系统;N为转速,r/min;λ为钻速指数;W为钻压,KN;M为门限钻压,KN;h为牙齿磨损量;C2为牙齿磨损系统;Cp为压差影响系数;CH为水力参数影响因素。另一类具有代表性的物理模型是基于机械比能的钻速方程及其各种形式的修正模型,公式2为基于机械比能钻速方程:式中,ROP为机械钻速,m/h;MSE为机械比能,Kpa;WOB为钻压,KN;Ab为井眼面积,m2;N为转速,r/min,;T为扭矩,KN-m。2)从上述机械钻速物理模型中分别总结归纳出影响机械钻速的相关参数,包括但不局限于钻压、转速、排量、扭矩、压差、钻头特性、钻井液性质、水力因素和地层特性等;3)采用信息增益算法(informationgain)对每一个物理模型的众多参数进行相关性分析。信息增益是机器学习算法中的一种特征选择方法,如果选择了一个特征后,信息增益最大,即信息的不确定性减少的程度最大,那么这个特征就最重要,反之,这个特征就最不重要。例如,公式3表示特征“转速N”对训练数据集D的信息增益g(D,N),定义为集合D的经验熵H(D)与特征“转速N”给定条件下D的经验条件熵H(D/A)之差。g(D,N)=H(D)-H(D|N)(3)依次类推,评价每一个特征对于训练数据集D的信息增益值,最终排列出一系列重要特征,挑选相关性较高的特征,筛除相关性较低的特征,这一过程大大降低了后续模型训练的复杂性,同时降低了机器学习算法过拟合的风险。4)收集已完钻井的数据,通过对一系列机器学习算法进行优选,最终采用Xgboost算法训练模型。该算法基于决策树算法,通过不断增加决策树的个数从而拟合上一轮模型的预测值与实际值之间的残差,最终训练完成时得到K棵决策树,每棵树会落到对应的一个叶子节点,最后的预测值就是把每个叶子节点上的数值累积求和。5)模型训练完毕后,向模型中投喂待钻井相关特征参数,最终得到待钻井机械钻速预测值。实施例1:(1)对经典机械钻速物理模型进行归纳总结:杨格模型、基于机械比能的钻速防尘、。(2)共提取出包括钻进参数、水力参数、地层参数和钻头参数在内的四大类11项与机械钻速相关的参数。(3)采用信息增益算法对众多参数进行相关性分析。(4)收集已钻井数据,并采用Xgboost算法进行模型训练。(5)利用训练好的物理与数据融合的模型预测待钻井机械钻速。(6)以5-1本文档来自技高网...
【技术保护点】
1.一种理论模型与数据融合的钻井机械钻速预测方法,其特征在于,包括以下步骤:/n1)收集一系列从钻井基本原理出发的机械钻速物理模型,采用公式1或公式2进行;/n公式1:/n
【技术特征摘要】
1.一种理论模型与数据融合的钻井机械钻速预测方法,其特征在于,包括以下步骤:
1)收集一系列从钻井基本原理出发的机械钻速物理模型,采用公式1或公式2进行;
公式1:
式中,ROP为机械钻速,m/h;KR为地层可钻性系统;N为转速,r/min;λ为钻速指数;W为钻压,KN;M为门限钻压,KN;h为牙齿磨损量;C2为牙齿磨损系统;Cp为压差影响系数;CH为水力参数影响因素;
公式2:
式中,ROP为机械钻速,m/h;MSE为机械比能,Kpa;WOB为钻压,KN;Ab为井眼面积,m2;N为转速,r/min,;T为扭矩,KN-m;
2)从上述机械钻速物理模型中分别总结归纳出影响机械钻速的相关参数,包括:钻压、转速、排量、扭矩、压差、钻头特性、钻井液性质、水力因素和地层特性;
3)采用信息增...
【专利技术属性】
技术研发人员:路保平,王果,李皋,许博越,肖东,臧艳彬,徐术国,
申请(专利权)人:中国石油化工股份有限公司石油工程技术研究院,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。