当前位置: 首页 > 专利查询>北京大学专利>正文

一种半导体型单壁碳纳米管提纯方法技术

技术编号:27922837 阅读:73 留言:0更新日期:2021-04-02 13:59
本发明专利技术公开了一种半导体型单壁碳纳米管提纯方法。将可去除的含亚胺键的共轭聚合物与待提纯碳纳米管混合溶于高沸点、高粘度的非极性有机溶剂中,通过循环冷却装置在稳定的低温条件下进行超声分散,再经过超速离心将包裹着所述共轭聚合物的半导体型单壁碳纳米管分离出来;之后通过旋蒸洗涤的方式将去除所述共轭聚合物,得到纯净的半导体型单壁碳纳米管。本发明专利技术方法能够获得高纯度的半导体型单壁碳纳米管,一次性提纯纯度>99.9%,产率大,成本低,并且操作稳定性好,可重复性强;用该方法提纯的半导体型单壁碳纳米管制备的场效应晶体管表现出优异的电学性能。

【技术实现步骤摘要】
一种半导体型单壁碳纳米管提纯方法
本专利技术属于半导体型单壁碳纳米管提纯
,涉及共轭聚合物包裹法提纯半导体型单壁碳纳米管的方法,具体涉及在稳定的低温条件下,采用高沸点、高粘度的非极性有机溶剂为提纯溶剂对半导体型单壁碳纳米管进行提纯的方法。
技术介绍
单壁碳纳米管根据电学性能不同,可以分为半导体型和金属型单壁碳纳米管。其中半导体型单壁碳纳米管(semiconductingsingle-walledcarbonnanotubes,s-SWNTs)是制备高性能碳基电子器件的材料需要。然而人们开发的大规模单壁碳纳米管生产方式,比如等离子体烧蚀、激光烧蚀、电弧放电、化学气相沉积等,都会产生半导体型和金属型单壁碳纳米管混合物,其中还含有大量无定形碳、催化剂等杂质。对于大规模集成电路而言,s-SWNTs的纯度需要达到99.999999%。目前报道了多种s-SWNTs的分离提纯技术,包括脱氧核糖核酸(DNA)包裹分离法、密度梯度超速离心法(DGU)、凝胶色谱分离法和共轭聚合物包裹分离法等。其中共轭聚合物包裹分离法是富集s-SWNTs的一种高效且低成本的策略,具有大规模提纯的潜力。共轭聚合物包裹分离法首先通过超声将共轭聚合物与碳纳米管原料混合分散到有机溶剂中,在这个过程中,由于共轭聚合物和碳纳米管存在π-π相互作用,聚合物会吸附到碳纳米管上,对碳纳米管进行包裹。被聚合物包裹的s-SWNTs能够实现良好的分散,而金属型碳纳米管由于含自由电子比较多,会与包裹金属型碳纳米管的聚合物形成电荷转移复合物,这种电荷转移复合物很容易再次聚集。之后通过高速离心,密度大的电荷转移复合物聚集体和杂质会发生沉降,而被聚合物包裹的s-SWNTs则分散在上清液中,提取上清液得到高纯度s-SWNTs溶液。目前报道的共轭聚合物包括聚芴、聚噻吩、聚咔唑等,雷等人的专利(Z.Bao,T.Lei,“Degradableconjugatedpolymers”.USpatentapplicationnumber.US62/260,350.Filedon27-Nov-2015)中报道了一类含亚胺键的共轭聚合物,结构通式如下:结构通式中Ar1包括芴、咔唑、噻吩、吡咯并吡咯二酮(DPP)等共轭单元,Ar2包括苯,芴,咔唑、噻吩、苯并噻二唑、吡啶、萘、蒽等共轭单元。该类聚合物也被用于s-SWNTs提纯,并且提纯纯度能够达到99.7%,产率达到23.7%(Lei,T.;Chen,X.;Pitner,G.;Wong,H.S.P.;Bao,Z.,RemovableandRecyclableConjugatedPolymersforHighlySelectiveandHigh-YieldDispersionandReleaseofLow-CostCarbonNanotubes.J.Am.Chem.Soc.2016,138(3),802–805)。含亚胺键的共轭聚合物能够在低浓度酸中分解,比如向提纯溶液中加入催化剂量的三氟乙酸(TFA)就可以实现聚合物分解:分解的聚合物会从碳管上脱离下来,从而获得纯净的s-SWNTs。这类含亚胺键的共轭聚合物在低的超声温度下能够获得良好的提纯效果。为了获得低的超声温度,上述专利和文献中采用干冰丙酮浴的方式,但干冰丙酮浴这种方式温度不可调,无法获得聚合物最佳的提纯温度,而且操作复杂,控温不稳定,影响s-SWNTs纯度和产率,不利于大规模提纯应用。此外,人们普遍采用甲苯为提纯溶剂,甲苯沸点低、粘度低,容易挥发,不利于碳纳米管薄膜的沉积以及提纯溶液长时间的保存。理论上来讲,聚合物构象以及s-SWNTs分散体的稳定性与溶液粘度和溶剂极性有关,因此,溶剂的选择对提纯纯度和产率会产生很大影响。因此,仍然需要开发新的共轭聚合物包裹分离方法对s-SWNTs进行提纯。
技术实现思路
本专利技术的技术目的是解决上述含亚胺键的共轭聚合物包裹分离法工艺中存在的问题,提供一种提纯s-SWNTs的方法,具有更高的提纯纯度(>99.9%)和产率(大于30%),并且最终得到的s-SWNTs溶液具有更少的聚合物杂质。本专利技术利用含亚胺键的共轭聚合物对s-SWNTs进行提纯,具体是:将含亚胺键的共轭聚合物与待提纯碳纳米管混合溶于非极性有机溶剂中,所述非极性有机溶剂为不易挥发的高沸点、高粘度的非极性芳香溶剂;首先进行超声分散,分散过程中通过循环冷却装置为超声溶液降温,使体系温度严格维持在室温或以下的一个固定温度;然后进行超速离心,使金属型碳纳米管和无定形碳等杂质沉降,上清液中主要分散有包裹着聚合物的s-SWNTs和游离聚合物,提取上清液即获得含高纯度s-SWNTs的提纯溶液。上述提纯方法中,所使用的不易挥发的高沸点(沸点高于120℃)、高粘度(粘度高于0.55mPa·s)非极性芳香溶剂是比甲苯沸点高、粘度高的非极性芳香溶剂,这类溶剂与甲苯相比,能够保证提纯过程和碳纳米管溶液放置过程中溶液浓度不发生变化。溶液具有一定的粘度有利于稳定s-SWNTs分散体,从而提高提纯产率,同时有利于后续碳纳米管薄膜的成型和加工。因为极性溶剂会增强聚合物和金属型碳纳米管形成的电荷转移复合物的分散能力,降低提纯纯度,所以优先采用非极性溶剂。此外,溶剂的偶极矩也会对提纯纯度和产率产生影响。所述不易挥发的高沸点、高粘度非极性芳香溶剂优选邻二甲苯、间二甲苯、1,2,4-三甲基苯和它们的混合溶剂,最优选邻二甲苯。上述提纯方法中,所述含亚胺键的共轭聚合物是一类可以从碳纳米管上去除(可回收)的含亚胺键的共轭聚合物,包括聚芴、聚噻吩、聚咔唑、聚吡咯并吡咯二酮(DPP)等聚合物,可以是含芴、咔唑,噻吩、吡咯并吡咯二酮单体的均聚物,或者是它们之间组成的共聚物,或者是它们与苯、萘、蒽、吡啶、联吡啶、苯并噻二唑等单体组成的共聚物,单体之间通过亚胺键相连。例如下面通式所示结构的一类含亚胺键的共轭聚合物:其中,Ar1代表芴、咔唑、噻吩、吡咯并吡咯二酮等共轭单元,Ar2代表苯、芴、咔唑、噻吩、吡咯并吡咯二酮、苯并噻二唑、吡啶、萘、蒽等共轭单元;n代表聚合度,优选为10-30的整数。所述含亚胺键的共轭聚合物和待提纯碳纳米管的混合比例与最终提纯产率和纯度有关,通常,高聚合物与碳纳米管比例将导致产率增加而纯度降低。对于特定的聚合物,有必要探索适当的聚合物与碳纳米管比例,以平衡产率和纯度。优选的聚合物与碳纳米管比例为0.2-1.0(质量比)。上述提纯方法中,超声分散的功率、时间与提纯产率和碳纳米管质量密切相关。功率低,时间短,则碳纳米管分散不完全,产率低;功率高,时间长,产率提高,但可能损坏碳纳米管,比如折断碳纳米管或者引入其他缺陷。超声功率与提纯所用的容器大小和一次性提纯的量有关。优选的超声时间小于2h。上述提纯方法中,通过循环冷却装置为超声溶液降温,循环冷却装置包括循环冷却仪器以及双层壁容器。超声溶液置于双层壁容器内,双层壁容器的内外层壁之间通循环冷却液为超声溶液降温,使体系温度维持在室温及以下的一个固定温度。所述双层壁容器可以是玻璃本文档来自技高网
...

【技术保护点】
1.一种提纯半导体型单壁碳纳米管的方法,包括以下步骤:/n1)待提纯碳纳米管与含亚胺键的共轭聚合物混合溶于非极性有机溶剂中,其中所述非极性有机溶剂为不易挥发的高沸点、高粘度的非极性芳香溶剂;/n2)将步骤1)所得混合溶液在低温环境下进行超声分散,分散过程中通过循环冷却装置为超声溶液降温,使体系温度严格维持在室温或以下的一个固定温度;/n3)超速离心使金属型碳纳米管及其他杂质沉降,上清液中分散有包裹着含亚胺键的共轭聚合物的半导体型单壁碳纳米管。/n

【技术特征摘要】
1.一种提纯半导体型单壁碳纳米管的方法,包括以下步骤:
1)待提纯碳纳米管与含亚胺键的共轭聚合物混合溶于非极性有机溶剂中,其中所述非极性有机溶剂为不易挥发的高沸点、高粘度的非极性芳香溶剂;
2)将步骤1)所得混合溶液在低温环境下进行超声分散,分散过程中通过循环冷却装置为超声溶液降温,使体系温度严格维持在室温或以下的一个固定温度;
3)超速离心使金属型碳纳米管及其他杂质沉降,上清液中分散有包裹着含亚胺键的共轭聚合物的半导体型单壁碳纳米管。


2.如权利要求1所述的方法,其特征在于,所述含亚胺键的共轭聚合物是含芴、咔唑、噻吩、吡咯并吡咯二酮单体的均聚物,或者它们之间组成的共聚物,或者它们与苯、萘、蒽、吡啶、联吡啶和/或苯并噻二唑单体组成的共聚物,单体之间通过亚胺键相连。


3.如权利要求2所述的方法,其特征在于,所述含亚胺键的共轭聚合物的结构通式如下:



其中,Ar1代表芴、咔唑、噻吩或吡咯并吡咯二酮共轭单元,Ar2代表苯、芴、咔唑、噻吩、苯并噻二唑、吡啶、萘或蒽共轭单元;n代表聚合度,为10-30的整数。


4.如权利要求1所述的方法,其特征在于,步骤...

【专利技术属性】
技术研发人员:雷霆王静怡
申请(专利权)人:北京大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1