基于鲁棒萤火虫-粒子群混合优化的风-光-燃料电池微电网频率控制方法技术

技术编号:27749884 阅读:83 留言:0更新日期:2021-03-19 13:45
一种基于鲁棒萤火虫‑粒子群混合优化的风‑光‑燃料电池微电网频率控制方法,包括以下步骤:步骤1、分布式电源建模,过程如下:1.1风/光/燃料电池/柴油发电机模型;1.2储能系统模型,在非高峰时段或在太阳能强度和风速较高时产生的额外电能可以储能在飞轮、电池或超级电容等储能设备中,储存的电力可以在高峰负荷期间或风能和光伏发电不够用期间重新利用;步骤2、构建用于频率控制的微电网模型;步骤3,FF‑PSO混合优化PID控制。本发明专利技术使得微网在不同运行条件下(如风速变化和负荷需求变化)频率偏差最小。

【技术实现步骤摘要】
基于鲁棒萤火虫-粒子群混合优化的风-光-燃料电池微电网频率控制方法
本专利技术涉及一种微电网频率控制方法。
技术介绍
电力系统通常向位于不同位置的不同类型的负载供电。由于在一些偏远和孤立的地方无法获得这种常规电力,由于安装额外的输电和配电线路的地理限制,以及能源需求的日益增长,导致将可再生能源引入常规电力系统,如太阳能光伏、风力、微型水力、等。以满足日益增长的需求,并最大限度地减少环境污染、传输损耗。然而,这些可再生能源具有高度不确定性,气发电取决于天气情况。该现象可能会导致电力系统频率发生较大波动,威胁系统的稳定运行。为此,本专利针对含有风机、光伏、燃料电池以及各类储能系统的微网,提出一种基于萤火虫和粒子群混合优化技术用于调节PID控制器参数,使得微网在不同运行条件下(如风速变化和负荷需求变化)频率偏差最小。首先,之前大多数研究主要针对电力系统内负荷不确定性造成的频率波动提出一些控制方法,但当光伏等可再生能源普及后,其可能会造成能量管理的难题。有研究针对风力-燃料电池-柴油发电机和储能元件组成的微网提出了一种小信号分析方法,但他们没有应用任何控制器来获得更好的频率控制曲线。尽管在基于启发式优化技术的文献中有很多关于频率控制的工作,但是它们主要在传统的火电、水电系统中进行研究,在这些系统中,唯一的干扰是负载变化的形式。然而,在当前的研究中,频率控制问题是在微电网中研究的,该微电网存在间歇性的可再生能源,例如风能和太阳能光伏。这里,除了负载需求的变化之外,频率控制器还受到风速和太阳强度变化的影响。此外,在以负载需求、风速和太阳强度变化为形式的多输入扰动下,基于风/光伏/风力发电/燃料电池/储能系统微电网的能量管理是一个至关重要的问题。
技术实现思路
为了克服已有技术的不足,本专利技术提供了一种基于鲁棒萤火虫-粒子群混合优化的风-光-燃料电池微电网频率控制方法,使得微网在不同运行条件下(如风速变化和负荷需求变化)频率偏差最小。本专利技术解决其技术问题所采用的技术方案是:一种基于鲁棒萤火虫-粒子群混合优化的风-光-燃料电池微电网频率控制方法,所述方法包括以下步骤:步骤1、分布式电源建模,过程如下:1.1风/光/燃料电池/柴油发电机模型电力由风力、光伏、燃料电池和柴油发电机产生,以满足负荷需求;其中风能和光伏所产生的电功率10%-15%被水电解槽用于产生氢气,然后由燃料电池根据负载要求发电;柴油发电机可视为备用电源,在风力、光伏等其他电源不可用的情况下,它可以自动向所连接的负载供电,风电和光伏的传递函数可以忽略其非线性,用简单的一阶线性传递函数表示:式中,KWPG和KPV是增益常数;TWPG和TPV分别为风和光伏的时间常数;和PPVG为系统内第k各风机输出功率;PW为风机的机械功率;为太阳辐照度;水电解槽、燃料电池和柴油发电机的一阶传递函数为:式中,KAE,KFC,KDEG是增益常数;TAE、TFC、TDEG分别为电解槽、燃料电池、柴油发电机的时间常数;PFC为燃料电池输出功率;PAE为电解槽输出功率;PDEG为柴油发电机输出功率;Δf为系统频率偏差;1.2储能系统模型在非高峰时段或在太阳能强度和风速较高时产生的额外电能可以储能在飞轮、电池或超级电容等储能设备中,储存的电力可以在高峰负荷期间或风能和光伏发电不够用期间重新利用,飞轮、电池或超级电容储能系统的线性传递函数如下所示:式中,KFES,KBES,KUC是增益常数,TFES,TBES,TUC分别是飞轮储能/电池储能/超级电容的时间常数;PFES为飞轮储能输出功率;PBES为电储能输出功率;PUC为超级电容输出功率;步骤2、构建用于频率控制的微电网模型,过程为:微网总发电量PMG表示为:PMG=PT+PDEG+PFCG+PPVG±PFES±(PBESorPUC)(7)其中PT=PWPG+PPVG-PAE(8)式中,PT为风机和光伏的净功率;供需之间的电力平衡通过控制各发电单元和储能来实现,表示为:ΔPe=PMG-PL(9)式中,PMG是微电网总发电量;PL是总电力需求;频率偏差Δf计算如下:式中,Ksc为微网的特征常数,此时,系统的传递函数Gsys表示为:式中,M=Ksys和D=KsysTsys分别为系统的等效惯性常数和阻尼常数;步骤3,FF-PSO混合优化PID控制,过程为:采用萤火虫算法进行全局搜索,采用粒子群算法进行局部搜索,首先,利用萤火虫算法识别搜索空间的有效区域,然后采用粒子群算法进行下一阶段的挖掘;为了获得所提出的FF-PSO方法的优越性,对萤火虫和粒子群的特性进行了协调,以获得最佳的控制效果。进一步,所述FF-PSO方法包括以下步骤:3.1、首先初始化萤火虫随机种群,其中包括对萤火虫数量、荧光强度、迭代次数Iter的设定;3.2、随机初始化第i各萤火虫在目标函数搜索范围内的位置,并计算萤火虫发光亮度;3.3、寻找光强最大的萤火虫,并更新萤火虫的位置;3.4、判断是否达到最大迭代数或者要求精度,如果达到则进行下一步,否则转向3.2;3.5、选择10只发光亮度最大的萤火虫作为最为PSO的输入;3.6、计算出每个萤火虫的适应度,并对每个萤火虫,用它的适应度值和个体极值比较,如果适应度值大于个体极值,则个体极值用适应度值替换;3.7、判断是否达到最大迭代数或者要求精度,如果达到则停止,否则更新萤火虫位置和速度并产生新的种群。本专利技术中,风电、光伏发电以及负荷的变化都具有不确定性,该不确定性将导致微网中发电量和需求量之间不匹配,造成电力系统频率偏差,从而威胁系统的稳定运行。为此,本专利从两方面去解决该问题。首先,在系统结构上除了微网本身自带的风机、光伏以外增加了燃料电池和各类储能系统。其次,提出一种萤火虫和粒子群混合优化技术用于调节PID控制器参数,使得微网在不同运行条件下(如风速变化和负荷需求变化)频率偏差最小。本专利技术的有益效果主要表现在:使得微网在不同运行条件下(如风速变化和负荷需求变化)频率偏差最小。附图说明图1为基于风/光/燃料电池的微网框图。图2为微电网能量管理策略流程图。图3为微网线性模型。图4为FF-PSO算法的流程图。具体实施方式下面结合附图对本专利技术作进一步描述。参照图1~图3,一种基于鲁棒萤火虫-粒子群混合优化的风-光-燃料电池微电网频率控制方法,包括以下步骤:步骤1、分布式电源建模,过程如下:各种分布式电源与储能系统集成在一起,以提高负荷供电的质量和可靠性,然而,由于风速和光照强度的变化,风力和光伏等发电资源具有随机性和不确定性,该特性可能会使得系统中有功功率和无功功率的不匹配度增加从而导致系统不稳定本文档来自技高网
...

【技术保护点】
1.一种基于鲁棒萤火虫-粒子群混合优化的风-光-燃料电池微电网频率控制方法,其特征在于,所述方法包括以下步骤:/n步骤1、分布式电源建模,过程如下:/n1.1风/光/燃料电池/柴油发电机模型/n电力由风力、光伏、燃料电池和柴油发电机产生,以满足负荷需求;其中风能和光伏所产生的电功率10%-15%被水电解槽用于产生氢气,然后由燃料电池根据负载要求发电;柴油发电机可视为备用电源,在风力、光伏等其他电源不可用的情况下,它可以自动向所连接的负载供电,风电和光伏的传递函数可以忽略其非线性,用简单的一阶线性传递函数表示:/n

【技术特征摘要】
1.一种基于鲁棒萤火虫-粒子群混合优化的风-光-燃料电池微电网频率控制方法,其特征在于,所述方法包括以下步骤:
步骤1、分布式电源建模,过程如下:
1.1风/光/燃料电池/柴油发电机模型
电力由风力、光伏、燃料电池和柴油发电机产生,以满足负荷需求;其中风能和光伏所产生的电功率10%-15%被水电解槽用于产生氢气,然后由燃料电池根据负载要求发电;柴油发电机可视为备用电源,在风力、光伏等其他电源不可用的情况下,它可以自动向所连接的负载供电,风电和光伏的传递函数可以忽略其非线性,用简单的一阶线性传递函数表示:






式中,KWPG和KPV是增益常数;TWPG和TPV分别为风和光伏的时间常数;和PPVG为系统内第k各风机输出功率;PW为风机的机械功率;为太阳辐照度;
水电解槽、燃料电池和柴油发电机的一阶传递函数为:



式中,KAE,KFC,KDEG是增益常数;TAE、TFC、TDEG分别为电解槽、燃料电池、柴油发电机的时间常数;PFC为燃料电池输出功率;PAE为电解槽输出功率;PDEG为柴油发电机输出功率;Δf为系统频率偏差;
1.2储能系统模型
在非高峰时段或在太阳能强度和风速较高时产生的额外电能可以储能在飞轮、电池或超级电容等储能设备中,储存的电力可以在高峰负荷期间或风能和光伏发电不够用期间重新利用,飞轮、电池或超级电容储能系统的线性传递函数如下所示:









式中,KFES,KBES,KUC是增益常数,TFES,TBES,TUC分别是飞轮储能/电池储能/超级电容的时间常数;PFES为飞轮储能输出功率;PBES为电储能输出功率;PUC为超级电容输出功率;
步骤2、构建用于频率控制的微电网模型,过程为:
微网总发电量PMG表示为:
PMG=PT+P...

【专利技术属性】
技术研发人员:丁梁高捷刘炜杨彪朱权潘杰顾伟梁军姚兰斓王若洁魏健周丹刘业伟
申请(专利权)人:绍兴市上虞区舜兴电力有限公司国网浙江绍兴市上虞区供电有限公司国网浙江省电力有限公司绍兴供电公司浙江工业大学宁波数研信息技术咨询有限公司
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1