一种利用液体进行叶片小微孔角度测量的方法技术

技术编号:27498334 阅读:20 留言:0更新日期:2021-03-02 18:20
一种利用液体进行叶片小微孔角度测量的方法,首先通过刚性测量针获得所述航空发动机叶片的测量坐标系在光学测量设备上的准确位置,同时获得所述刚性测量针的测量影像。之后利用从所述气膜孔喷出的液柱的测量影像与所述刚性测量针的测量影像进行比对分析,从而计算出所述气膜孔加工所允许的公差范围与液柱在光学测量中的影像数据的对应关系,这样就可以直观的直接利用从所述气膜孔喷出的液柱进行影像测量,获知所述气膜孔是否满足加工要求。本发明专利技术所提供的一种利用液体进行叶片小微孔角度测量的方法,可快速直观的对所有叶片的气膜孔角度进行直接测量,获得真实的气膜孔角度数据,大大提升了测量效率。大大提升了测量效率。大大提升了测量效率。

【技术实现步骤摘要】
一种利用液体进行叶片小微孔角度测量的方法


[0001]本专利技术涉及测量
,特别涉及一种利用液体作为光学测量介质,对航空发动机叶片上的小微孔的真实角度进行测量的方法。

技术介绍

[0002]对现代航空发动机来说,随着性能的日益提升,各部件,特别是叶片的工作环境也越来越恶劣,因此需要利用各种技术手段来应对,例如,对于涡轮叶片来说,为保证其在高温、高压环境下还保有良好的力学性能,需要在将叶片铸造成空心结构,通过在内腔设置排气通道,并在叶片的叶身上,特别是叶身排气边上加工出多个气膜孔接通内腔,从而使得进入内腔的冷空气可以从叶身的气膜孔中喷出,在带走一定叶身热量的同时,在叶身上形成一层冷空气保护层,从而进一步降低叶身温度,保证叶片不被高温、高压的燃气烧蚀。因此,每一个气膜孔的角度均有严格要求,这样才能确保冷空气能均匀覆盖叶身所有区域,
[0003]图1a为一种航空发动机叶片的立体结构示意图;图1b为图1a的叶片的另一个视角的立体结构原理示意图;图1c为图1a的叶片的剖视结构原理示意图;图1d为图1a的叶片的叶身的剖面结构原理示意图;图1e为图1d的A-A剖面结构原理示意图;其中,图1c、图1d和图1e中标示的X、Y、Z为叶片测量坐标系,其依据中国航空工业部标准中的定义,在此不再赘述。参见图1a-1e所示,该航空发动机叶片100采用空心内冷结构,叶片底部设置铸造成型的与内腔连通的靠近前缘一侧的第一进气口11和靠近后缘一侧的第二进气口12,在叶尖设置有深2mm的叶尖槽30,所述叶尖槽30设置有出气口,所述后缘设置有Z轴平行的加工面20,所述加工面20上设置有多个与所述内腔连通的气膜孔21。
[0004]所述第一进气口11、所述第二进气口12以及所述叶尖槽30内的出气口均在铸造时直接成型,所述加工面20和所述气膜孔21在后继机加工序成型,其中先加工出所述加工面20,然后所述气膜孔21通过电火花加工方式在所述加工面20打孔成型后接通所述航空发动机叶片100的内腔。
[0005]所述气膜孔21的孔径一般为φ0.25mm~φ0.5mm之间,深度不小于6mm,所述加工面20至少设置有一组所述气膜孔21,每一组所述气膜孔21的孔径及倾斜角度相同。也就是说,所述加工面20可能会设置有不止一组的不同孔径的所述气膜孔21,在图1e中显示的是在所述加工面20上设置的是孔径相同的同一组所述气膜孔21的情况。
[0006]对于所述气膜孔21,在所述航空发动机叶片100的生产加工过程中,其与内腔的连通性可通过水流实验方式验证,也即是,利用一个可封闭的柔性接头与所述航空发动机叶片100的榫头部(也即是与所述第一进气口11和所述第二进气口12)密封连通,通过输入加压的水流,观察检测是否所有的所述气膜孔21能够排水,从而判断所述气膜孔21与内腔的连通与否。此外,如专利技术人在中国专利ZL2017112497983中提供的一种涡轮叶片机加孔空气流量测量方法所述,还可直接测量获得所述气膜孔21的流量数据。
[0007]但是,如图1d和图1e所示,所述气膜孔21相对于叶片测量坐标系的X轴的夹角α和与Z轴的夹角β,在设计上也有一定的要求,例如,所述气膜孔21相对于叶片测量坐标系的X
轴的夹角α可设计为61.5
°±
30

,所述气膜孔21相对于叶片测量坐标系的Z轴的夹角β可设计为80
°±
30

。由于所述气膜孔21的孔径过小,目前,尚未有公开的技术方案可用于对所述气膜孔21的角度进行直接测量。
[0008]现有的生产工艺中,只能是通过在电火花加工设备的参数设定之后,在代加工的所述航空发动机叶片100上加工出φ1mm的大孔,使用φ1的标准量棒插入所加工的打孔中,再通过三坐标机测量标准量棒的角度,角度合格则表示机床和/或夹具调整角度合格,再加工要求图纸要求孔径的小孔。
[0009]上述现有工艺保障方法存在如下缺陷:
[0010]1、只能判断夹具和/或机床调整的角度(也即是加工参数)是否正确,例如,通过加工φ1的大孔配合量棒测量角度,角度合格后默认加工直径φ0.25的小孔角度合格,但实际φ1的大孔与直径φ0.25无直接关联(电火花加工设备的参数设置不同),这种测量方法误差大,通常误差在1
°
~1.5
°
之间。
[0011]2、所述航空发动机叶片100的内腔均有复杂的回路和加强筋,量棒进入内腔后容易产生干涉,导致量棒向一边倾斜,测量角度不准确。
[0012]3、所述航空发动机叶片100均采用的是高温合金材料,因此加工难度大,加工时间长,通常加工一个φ1的孔需要15分钟左右。
[0013]4、加工完φ1孔的所述航空发动机叶片100只能报废,每批次叶片加工均需要报废2~3件叶片,每件叶片的价格均在1万到3万,造成的浪费极大。
[0014]专利技术人团队通过实验研究分析,在2019年11月13日提交了“2019111027142一种叶片小微孔角度测量方法”、“2019111032761用于叶片小微孔角度测量的测量针”以及“2019111032776用于叶片小微孔角度测量的测量针的使用方法”叁件专利技术专利申请,提供了一套完整的利用刚性测量针实现对叶片气膜孔角度的直接测量的技术方案,可获得真实的气膜孔角度数据,而且测量过程不会对叶片造成物理损伤。从而可对每一个叶片都进行检测,也就可以大大提高成品的合格率。
[0015]上述利用刚性测量针进行测量的方案,虽然数据准确性高,但在每一批次的每一片叶片上,要在每一组所述气膜孔21中的至少一个所述气膜孔21上装配测量针,而测量针的装配又比较繁琐,因此工人的劳动强度还是比较大,且由于测量针的装配耗时较长,因此整体的测量效率还有待提升。

技术实现思路

[0016]本专利技术要解决的技术问题是提供一种利用液体进行叶片小微孔角度测量的方法,以减少或避免前面所提到的问题。
[0017]为解决上述技术问题,本专利技术提出了一种利用液体进行叶片小微孔角度测量的方法,其用于对航空发动机叶片的气膜孔的实际角度进行直接测量,其包括如下步骤,
[0018]步骤A,对于每一批次的所述航空发动机叶片,选取至少一片所述航空发动机叶片,在每一组所述气膜孔中的至少一个所述气膜孔上装配刚性测量针,在光学测量设备上进行调试测量,从而一方面确定所述航空发动机叶片的测量坐标系在光学测量设备上的准确位置,另一方面获得所述刚性测量针的测量影像。
[0019]步骤B,取下所述刚性测量针,向所述航空发动机叶片供液,调节供液压力,使靠近
所述气膜孔的至少5mm范围内的液柱保持线性,采集从步骤A中装配刚性测量针的所述气膜孔喷出的液柱的测量影像数据,并与步骤A获得的所述刚性测量针的测量影像数据进行比对,获得液柱在光学测量中的影像数据与刚性测量针的测量影像数据的换算关系,从而计算出所述气膜孔加工所允许的公差范围与液柱在光学测量中的影像数据的对应关系,对于其他没有装配刚性测量针的所述气本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种利用液体进行叶片小微孔角度测量的方法,其用于对航空发动机叶片的气膜孔的实际角度进行直接测量,其特征在于,其包括如下步骤,步骤A,对于每一批次的所述航空发动机叶片,选取至少一片所述航空发动机叶片,在每一组所述气膜孔中的至少一个所述气膜孔上装配刚性测量针,在光学测量设备上进行调试测量,从而一方面确定所述航空发动机叶片的测量坐标系在光学测量设备上的准确位置,另一方面获得所述刚性测量针的测量影像。步骤B,取下所述刚性测量针,向所述航空发动机叶片供液,调节供液压力,使靠近所述气膜孔的至少5mm范围内的液柱保持线性,采集从步骤A中装配刚性测量针的所述气膜孔喷出的液柱的测量影像数据,并与步骤A获得的所述刚性测量针的测量影像数据进行比对,获得液柱在光学测量中的影像数据与刚性测量针的测量影像数据的换算关系,从而计算出所述气膜孔加工所允许的公差范围与液柱在光学测量中的影像数据的对应关系,对于其他没有装配刚性测量针的所述气膜孔以及其他的所述航空发动机叶片,只要喷出...

【专利技术属性】
技术研发人员:初文潮王志杰杨锦张文甲闫小斌李水姣
申请(专利权)人:中国航发南方工业有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1