本发明专利技术涉及医疗设施技术领域,且公开了一种遗传代谢病的入院病史辅助采集系统,包括系统基本构架,系统基本构架包括客户端和服务端,系统基于医院内电脑网络运行,以C/S架构布置于医院内部网络。该遗传代谢病的入院病史辅助采集系统,通过临床治疗、科研、管理需求,将遗传代谢病在入院阶段涉及到的所需信息进行规范化整理,同时通过NLP的技术自动化提取。(1)真正的从质量上进行内容把关,减少该病种后续的医疗失误,提高病历数据的质量;(2)标准的表单对低年资医生具有指导意义、教学意义;(3)传统情况,由于数据在记录时的缺失和不规范,导致后续科研人员回顾性研究时需重新收集数据,故此方法减少了医生重复的工作量,节省医生的时间。医生的时间。医生的时间。
【技术实现步骤摘要】
一种遗传代谢病的入院病史辅助采集系统
[0001]本专利技术涉及医疗设施
,具体为一种遗传代谢病的入院病史辅助采集系统。
技术介绍
[0002]遗传代谢病也称先天性代谢异常,是基因突变导致维持机体正常代谢所必需的某些酶、受体或载体缺乏或蛋白质异常发生的疾病,导致出现相应的病理改变和临床表现。严重的遗传性代谢病对健康损害很大,重者可致残致死。患病的新生儿在出生后不久即因各种遗传代谢性异常而发病,产生各种症状。医疗工作中,在接诊新生儿的早期,完整采集包括症状和体征等病史数据在诊疗过程中显得尤为重要。
[0003]一个独立的遗传代谢病患者在就诊中,医生在患者入院阶段会记载大量医疗数据,包括患者临床表现、患者母亲孕产期情况、体格检查的发现、检查检验的结果等,用来辅助后续的诊断和治疗等。传统的记载入院数据方式是基于医生直接在空白表单或低结构化的电子病历系统记录患者的数据,这种方法,由于输入的自由度较高,且不同医生的资质不同,经常会遗漏非常重要的患者信息或者描述不准确,从而导致信息的缺失、信息的错误,进一步可能导致后续治疗时的失误、以及回顾性科学研究时可用样本信息的缺失。现在应用中,传统的系统实现方式,均是在医疗病历的形式上进行质控,包括完整性、时限性、合规性,暂无系统针对特定病种进行内容质控。建立对遗传代谢病这一复杂病种的病史采集中内容的处理系统,对实现基于病历内容的质控、提升医疗数据质量具有重要意义。
技术实现思路
[0004]本专利技术提供了一种遗传代谢病的入院病史辅助采集系统,主要针对遗传代谢病进行病历内容的处理,针对此采集系统,本专利技术提供如下技术方案:一种遗传代谢病的入院病史辅助采集系统,包括系统基本构架,系统基本构架包括客户端和服务端,系统基于医院内电脑网络运行,以C/S架构布置于医院内部网络,并与医院内电子病历系统集成,应用服务器和数据库位于医院内网,院内电脑终端通过访问集成自电子病历系统的应用弹窗开展工作,病历数据将会经由系统客户端弹窗发送到应用服务器,调用NLP算法进行结构化文本提取;
[0005]客户端包括采集客户端,采集客户端与医院电子病历系统的客户端模块,安装在医生用户的PC机上;当医生保存电子病历时,电子病历系统将入院病史数据发送给采集客户端,将数据发送给服务端处理成标准化结果,并且在医生电脑弹出弹窗,以表单形式显示提取结果;
[0006]所述服务端包括采集助手API(Application Programming Interface)、变量解析服务和NLP(Natural Language Processing)引擎,所述采集助手API是采集助手服务端应用接口,接收采集客户端发送来的文本数据,并且将文本数据发送给变量解析服务获得结构化后的变量值,再将结果梳理成表单格式返回给客户端;同时,该模块会将传来的文本数
据进行统计,统计医生经常遗漏的信息变量;所述变量解析服务将非结构化文本解析成结构化标准变量集的服务,在解析过程中,会调用NLP引擎进行基于文本语义的变量提取;所述NLP引擎整合了机器学习自然语言处理算法的规则引擎;
[0007]一种遗传代谢病的入院病史数据结构化流程,包括以下步骤:
[0008]当医生在电子病历系统保存入院病史时,采集客户端会根据患者诊断列表判断该入院病史的诊断是否符合遗传代谢病种,如果不符合则不进行后续操作,如果符合,则将入院病史数据发送给采集助手API,开始遗传代谢入院病史数据结构化流程;
[0009]发送给采集助手API的入院病史数据基本上为文本数据,格式上会基于病历书写内容类别进行分类(现病史、既往史、出生史等),采集助手API获取到这些数据后,将调用变量解析服务进行结构化处理;
[0010]变量解析服务接收到入院病史数据之后,将根据收到的入院病史内容类别关联到相关的变量,并根据变量分为简单变量和复杂变量并的类别采用不同的解析规则:
[0011]在所有可提取的变量解析完毕后,变量解析服务将简单变量和复杂变量这两类变量结果整合,返回给采集助手API,采集助手API将对于本次结构化变量的结果进行统计,并写入到数据库,然后将变量结果梳理成表单格式,返回给采集客户端,采集客户端收到表单结果后,弹出窗口将结果展示给医生用户。
[0012]优选的,如果变量为可以直接提取的简单变量,其提取规则可以用正则表达式直接表达,那么将直接通过正则进行提取,提高整体结构化的处理性能。
[0013]优选的,如果变量的提取规则是无法用正则表达式等静态规则直接表达的复杂变量,那么将入院病史文本内容发送给NLP引擎,基于自然语言处理的语义规则来提取。
[0014]优选的,制定遗传代谢病入院病史应采集内容包括:患儿基本信息说明、出生史、产房复苏情况、生后呼吸情况和治疗情况、患儿自出生的症状描述、母孕期间的情况、入院前辅助检查情况、入院前用药情况、患儿筛查情况、喂养史、转运情况、家族史和体格检查结果。
[0015]优选的,在系统接受到电子病历系统的入院病史数据后,会将非结构化的内容进行NLP结构化处理,首先系统会将文本进行分词,并为所有的词标注词性,对于遗传代谢病这一病种,系统会对该病种下的每个特征变量事先预置复数个规则,系统将基于规则分析词与词的关联,构建语义分析树,最终提取出结构化的特征变量,并将结果返回到客户端弹窗上。
[0016]优选的,数据格式进行了标准化定义,根据变量特征进行分类设置;分为数值型变量为具体数值,如年龄、体重、身高等;布尔型变量以是/否、或有/无表示,如吸氧、是否产房复苏等;枚举型变量则根据变量特征枚举变量所有可能取值,展示为对预设值的多选,如早产原因,枚举为胎膜早破、宫内感染、胎儿窘迫等。
[0017]优选的,系统在医生打开某患者的入院病史时,通过检索当前患者电子病历系统中入院诊断列表,对诊断符合遗传代谢病种(包括遗传代谢病、新生儿血糖异常、肾上腺功能异常、糖尿病、甲状腺功能减退症、有机酸血症、先天性肾上腺皮质增生及肾上腺功能减退等疾病)的患者进行自动入组,入组即显示遗传代谢病的表单。
[0018]优选的,系统以弹窗的形式嵌入在电子病历系统中,当医生结束书写电子病历的时候,点击保存按钮则触发本系统,以弹窗的样式弹出提供浏览;医生可在界面上下滚动查
看已经提取到的信息,同时提供医生在页面上直接修改、添加的功能,当必填项未被全部填写时,也提供必填项校验提醒功能。
[0019]优选的,系统根据NLP技术,将医生在入院病史中写的非结构化文本,转换成结构化文本并提取、归一成为标准化结果。
[0020]本专利技术具备以下有益效果:
[0021]该遗传代谢病的入院病史辅助采集系统,通过临床治疗、科研、管理需求,将遗传代谢病在入院阶段涉及到的所需信息进行规范化整理,同时通过NLP的技术自动化提取;
[0022](1)真正的从质量上进行内容把关,减少该病种后续的医疗失误,提高病历数据的质量;
[0023](2)标准的表单对低年资医生具有指导意义、教本文档来自技高网...
【技术保护点】
【技术特征摘要】
1.一种遗传代谢病的入院病史辅助采集系统,包括系统基本构架,其特征在于:系统基本构架包括客户端和服务端,系统基于医院内电脑网络运行,以C/S架构布置于医院内部网络,并与医院内电子病历系统集成,应用服务器和数据库位于医院内网,院内电脑终端通过访问集成自电子病历系统的应用弹窗开展工作,病历数据将会经由系统客户端发送到应用服务器,调用NLP算法进行结构化文本提取;客户端包括采集客户端,采集客户端与医院电子病历系统的客户端模块,安装在医生用户的PC机上;当医生保存电子病历时,电子病历系统将入院病史数据发送给采集客户端,将数据发送给服务端处理成标准化结果,并且在医生电脑弹出弹窗,以表单形式显示提取结果;所述服务端包括采集助手API、变量解析服务和NLP引擎,所述采集助手API是采集助手服务端应用接口,接收采集客户端发送来的文本数据,并且将文本数据发送给变量解析服务获得结构化后的变量值,再将结果梳理成表单格式返回给客户端;同时,该模块会将传来的文本数据进行统计,统计医生经常遗漏的信息变量;所述变量解析服务将非结构化文本解析成结构化标准变量集的服务,在解析过程中,会调用NLP引擎进行基于文本语义的变量提取;所述NLP引擎整合了机器学习自然语言处理算法的规则引擎;一种遗传代谢病的入院病史数据结构化流程,包括以下步骤:当医生在电子病历系统保存入院病史时,采集客户端会根据患者诊断列表判断该入院病史的诊断是否符合遗传代谢病种,如果不符合则不进行后续操作,如果符合,则将入院病史数据发送给采集助手API,开始遗传代谢入院病史数据结构化流程;发送给采集助手API的入院病史数据基本上为文本数据,格式上会基于病历书写内容类别进行分类(现病史、既往史、出生史等),采集助手API获取到这些数据后,将调用变量解析服务进行结构化处理;变量解析服务接收到入院病史数据之后,将根据收到的入院病史内容类别关联到相关的变量,并根据变量的类别分为简单变量和复杂变量并采用不同的解析规则:在所有可提取的变量解析完毕后,变量解析服务将简单变量和复杂变量这两类变量结果整合,返回给采集助手API,采集助手API将对于本次结构化变量的结果进行统计,并写入到数据库,然后将变量结果梳理成表单格式,返回给采集客户端,采集客户端收到表单结果后,弹出窗口将结果展示给医生用户。2.根据权利要求1所述的一种遗传代谢病的入院病史辅助采集系统,其特征在于:如果变量为可以直接提取的简单变量,其提取规则可以用正则表达式直接表达,那么将直接通过正则进行提取,提高整体结构化的处理性能。...
【专利技术属性】
技术研发人员:张晓波,周文浩,汤梁峰,曹云,陈超,叶成杰,卢宇蓝,徐虹,黄国英,
申请(专利权)人:复旦大学附属儿科医院,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。