向法拉第元件施加磁场旋转光信号偏振的可变光衰减器制造技术

技术编号:2721271 阅读:133 留言:0更新日期:2012-04-11 18:40
对沿第一方向偏振的光信号进行衰减的设备,该设备包括一个偏振旋转单元,旋转光信号的偏振,产生具有第一方向偏振分量和相对于第一方向相差大体为90度的第二方向偏振分量的偏振旋转的光信号,以及一个输出单元,通过偏振旋转的光信号的第二方向的偏振分量,阻挡偏振旋转的光信号的第一方向的偏振分量。偏振旋转单元还包括一个电磁铁和一个永久磁铁并提供了各种结构的磁轭。一个控制电路将输出信号的输出功率保持为恒定值。(*该技术在2017年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及一种可变光衰减器,通过当光信号通过法拉第元件时旋转光信号的偏振来衰减光信号。更具体地说,本专利技术涉及光信号的偏振的旋转角,用于旋转光信号的偏振的电磁铁和永久磁铁的结构,以及从可变光衰减器输出的光信号的功率电平或光的功率电平的控制。图28是使用波分多路复用的传统的光通信系统的示意图。参见图28,多个光发送器(OS1…OSn)200以对应的波长(λ1…λn)发送光信号。该光信号是从光发送器200内部的一个光源产生的,典型的为一个激光二极管(LD)。由光发送器200发送的光信号由一个多个复用器(MUX)210结合成为一个波分多路复用的信号,通过光纤维220传播。光放大器230放大该波分多路复用信号。一个去多路复用器(DEMUX)240对波分的多路复用信号去多路复用,成为多个波长为λ1…λn的单独的光信号。多个光接收器,或单个可调谐光接收机250,可用于检测各光信号。光频率控制器260和光频率标准装置270可用来控制光发送器200的发送频率。在光通信系统中,经常需要调整光信号的强度(光功率)。例如,信号的质量是由光信号的强度和光信号中的噪声的强度之间的比来决定的。该比通常称为光信噪比(光SNR)。因此,有必要经常调整光信号的强度以将光SNR增加到预定的水平之上。此外,为了增加图28中所示的光通信系统中的波分多路复用信号的光SNR,对各个光信号通常需要具有相同的光强度。但是,每个光信号的电平随着产生光信号的光源的输出功率中的变化以及随着光通信系统中的光学元件的插入损失而发生不希望的改变。而且,光放大器比较典型地具有取决于波长的增益,由此,使得各个光信号具有不同的光强度。可变光衰减器是典型地用来控制每个光信号的强度的,从而保持每个光信号为相同的光强度。一般来说,可变光衰减器衰减,或减小某些光信号的强度,使得所有的光信号保持为相同的强度。在传统的光衰减器中,一个适当的物质被加到玻璃基板上,使得在基板上的透光度连续地变化。通过机械地改变光信号经过玻璃基板的位置即可以改变光信号的衰减。但是,光信号的位置的这种机械地改变,使得光衰减器相对较慢并具有不希望的较大的体积。因此,要在光发送器中提供这种机械改变的可变衰减器是很困难的。日本延迟公开专利申请No.6-51255,名称“光衰减器”公开了一种可变光衰减器,它无需机械的改变操作。图29公开了这种可变光衰减器9。参见图29,该可变光衰减器包括一个磁光晶体1,偏振器2,永久磁铁3和电磁铁4。光信号由一个偏振器线性偏振(未示出),从而提供一个线性偏振的光信号5。线性偏振的光信号5沿着光通路通过磁光晶体1。永久磁铁3施加一个与光通路平行的磁场。电磁铁4施加一个与光通路垂直的可变磁场。该可变磁场通过控制加到电磁铁4中的电流可得到控制。由永久磁铁3提供的磁场和由电磁铁4提供的磁场结合起来形成一个最终的,或复合的磁场,当线性偏振的光信号5经过磁光晶体1通过光通路时,旋转其偏振。磁光晶体1,永久磁铁3和电磁铁4一起形成一个法拉第元件9。当磁光晶体1具有较大数目的光畴时,就会产生较大的光损失。但是,如果有永久磁铁3施加的磁场大于饱和程度时,复合的磁场变为大于饱和磁场。在这种情况下,在磁光晶体1内部的磁畴基本结合为一个大的畴,从而减少了光损失。由于由电磁铁4产生的磁场的强度随着电磁铁4中的电流的电平而改变,复合磁场的的方向随着电流的电平而改变。光信号5的偏振方向,按着称为“法拉第现象”物理原理,被复合磁场旋转。其旋转角(即,“法拉第旋转”)与平行于光通路的复合磁场的分量(磁化矢量)的强度有关。法拉第旋转θ由下述公式(1)给出。公式(1)θ=V·L·H其中V为根据形成磁光晶体1的物质确定的Verdet常数,L为光通路,H为磁场强度。参见图29,偏振方向被旋转的光信号5传播到偏振器2。如果偏振器2偏振方向与光束5的偏振方向相同,则整个光束5通过偏振器2。如果偏振方向不相符,则只有光束5中的与偏振器2的偏振方向相同的分量通过偏振器2。如果偏振方向相互之间具有90度的差,则光束5不能通过偏振器2,从而,提供光束5的最大的衰减。这样,可以通过控制法拉第旋转θ来确定光束5的那一部分通过偏振器2。日本延迟公开专利申请No.6-51255还公开了另一种光衰减器。这种光衰减器被示于图30。现在参见图30,由光纤6a提供的光信号的一部分通过由双折射晶体8a和8b的双折射效果被引导到光纤6b。透镜7a和7b被用于对光信号聚焦。法拉第旋光器9,例如如图29所示的法拉第旋光器9被置于双折射晶体8a和8b之间。被引导到光纤6b的光信号与整个光信号的比可以通过调整法拉第旋光器9的法拉第旋转角而得到控制。因此,光信号的功率可以被可变地衰减。图29中所示的可变光衰减器需要对光束线性偏振,而图30所示的可变光衰减器不需要对光束在任何方向上偏振。图29和30所示的可变光衰减器不需要任何机械改变操作,因此不需要任何移动部件。因此,这种可变光衰减器与需要机械改变的部件的传统的可变光衰减器相比提供了改进的可靠性。但是,利用图29所示的可变光衰减器,法拉第元件1通常是可提供法拉第效应的钇-铁-柘榴石(YIG)板或者一个柘榴石厚膜。但是,由这种法拉第元件提供的法拉第旋转通常依赖于波长和温度。表1列出了由法拉第元件提供的法拉第旋转的波长依赖性和温度依赖性,以及相对于波长或温度的变化法拉第旋转产生的变化。测量是根据在1550nm产生45度法拉第旋转的法拉第旋光器得出的。当柘榴石厚膜的成分改变时,柘榴石厚膜的特性也发生改变。表1显示了相对地较大的改变。表1中的负号表示法拉第旋转随着波长或温度的增加而减小。图31为显示磁场强度H和法拉第旋转之间的关系的示意图。参见图31,随着磁场强度H的增加,法拉第旋转增加了一个梯度V*L。在磁场强度的一定程度之外,法拉第旋转饱和。该饱和显示在磁光晶体内部的磁畴被结合成为一个磁畴。图31显示了梯度V*L随着温度或者波长的变化的变化。结果,Verdet常数具有不希望的波长依赖性和温度依赖性。因此,图29和30所示的可变光衰减器依赖于波长和温度,这是所不希望的。此外,图30所示的可变光衰减器具有轻微的偏振损失。因此,本专利技术的目的是提供一种可变光衰减器,它不依赖于温度和波长。本专利技术的另一个目的是提供一种相对紧凑的,需要较小的驱动电流并有效地提供磁场的可变光衰减器。本专利技术的进一步的目的是提供一种具有较小的偏振损失的可变光衰减器。本专利技术的其他目的和优点将通过下述的描述说明,以及通过描述或者本专利技术的实践变得更为明显。本专利技术的前述目地是通过这样一种设备完成的,它对沿第一方向偏振的光信号进行衰减。该设备包括一个偏振旋转单元和一个输出单元。该偏振旋转单元旋转光信号的偏振,产生具有第一方向偏振分量和相对于第一方向80度±30度的第二方向偏振分量的偏振旋转的光信号。输出单元通过偏振旋转的光信号的第二方向的偏振分量,阻止偏振旋转的第一方向的偏振分量。本专利技术的目的也通过提供这样一种设备取得,该设备包括,一个磁光元件,一个磁路(例如电磁铁),一个永久磁铁。光信号沿着光路传播通过磁光元件。磁路向磁光元件提供一个可变磁场。永久磁铁向磁光元件提供一个永久磁场。可变磁场和永久磁场结合一起形成一个最终的,或复合的磁场,本文档来自技高网...

【技术保护点】
对沿第一方向偏振的光信号进行衰减的设备,包括: 一个偏振旋转单元,旋转光信号的偏振,产生具有第一方向偏振分量和相对于第一方向相差80度±30度的第二方向偏振分量的偏振旋转的光信号;以及 一个输出单元,通过偏振旋转的光信号的第二方向的偏振分量,阻挡偏振旋转的光信号的第一方向的偏振分量。

【技术特征摘要】
...

【专利技术属性】
技术研发人员:尾中宽福岛畅洋
申请(专利权)人:富士通株式会社
类型:发明
国别省市:JP[日本]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1