【技术实现步骤摘要】
一种动态车辆检测方法
本专利技术涉及智能交通系统安全驾驶
,特别是关于一种动态车辆检测方法。
技术介绍
近年来,无人驾驶技术成为人工智能领域的研究热点,照相机、激光雷达以及毫米波雷达等一系列传感器为无人驾驶车辆提供了所需环境信息,其中激光雷达凭借高精度与高分辨率成为无人驾驶常用传感器之一。车辆通常所处的城市道路中主要包括两类障碍物:静态障碍物与动态障碍物。静态障碍物检测在同步定位与地图构建(SimultaneousLocalizationandMapping,SLAM)领域占据重要地位,车辆可生成环境地图并进行自车定位;同时,动态目标检测与跟踪(DetectionandTrackingofMovingObjects)技术也是无人驾驶感知的基础性技术之一,真实场景中动态目标每一时刻所处位置更加随机,这使得动态车辆检测更加困难。目前,主流的车辆检测方法主要包括基于训练的方法和基于模型的方法。基于训练的方法又包括了传统机器学习方法和深度学习方法,前者主要思路为特征提取和分类器检测,后者主要利用深度神经网络对点云自适应学习。基于训练自适应学习的方法可以获得更高的检测精度,且通常来说可提供的数据量越多,获取的检测精度越高。但真实场景复杂多变,难以提供包含所有可能障碍物的充足训练数据,导致面对未经训练的目标难以正确检出。同时,基于训练的方法对处理器性能也提出了更高的要求。基于模型的方法是另一种有效的车辆检测方法,通过构建目标测量模型,设计模型拟合函数,判断原始点云数据与测量模型拟合程度,进而利用一些约束条件 ...
【技术保护点】
1.一种动态车辆检测方法,其特征在于,包括:/n步骤1,预处理点云;/n步骤2,检测动态目标;以及,/n步骤3,从动态目标中识别出动态车辆;/n步骤4,检测动态车辆,其具体包括:/n步骤41,计算动态车辆的位姿初值;/n步骤42,利用粒子群优化算法估计动态车辆位姿,其具体包括:/n步骤421,根据动态车辆的位姿初值,在其位置附近一定范围内进行点云聚类搜索,查看是否有关联动态目标,并设置有关联动态目标和无关联动态目标时的粒子群初始化参数;/n步骤422,将步骤3输出的动态车辆的点云聚类投影到水平x-y平面上,利用下式(1)和式(2)计算各粒子的适应度函数值;/n
【技术特征摘要】
1.一种动态车辆检测方法,其特征在于,包括:
步骤1,预处理点云;
步骤2,检测动态目标;以及,
步骤3,从动态目标中识别出动态车辆;
步骤4,检测动态车辆,其具体包括:
步骤41,计算动态车辆的位姿初值;
步骤42,利用粒子群优化算法估计动态车辆位姿,其具体包括:
步骤421,根据动态车辆的位姿初值,在其位置附近一定范围内进行点云聚类搜索,查看是否有关联动态目标,并设置有关联动态目标和无关联动态目标时的粒子群初始化参数;
步骤422,将步骤3输出的动态车辆的点云聚类投影到水平x-y平面上,利用下式(1)和式(2)计算各粒子的适应度函数值;
其中,fS为点云聚类在位置S=(xs,ys,θs)下的适应度函数,(xi,yi)为点云聚类中任一点,λi为归一化常数,为积分归一化常数,βk表示经验系数,k=0,...,3表示各积分区域,表示位置S=(xs,ys,θs)处车辆模型的各积分区域,gi(x,y)为点云聚类(xi,yi)在空间(x,y)位置处的二维正态分布,σ2为测量噪声方差;
步骤423,将各粒子位置对应适应度函数值与上一次循环结果进行比较,将更大的适应度函数值及对应粒子位置赋值为该粒子个体的最大适应值及最佳位置,并选取所有粒子中最大的适应度函数值对应位置为全局最佳位置;
步骤424,利用粒子个体和全局最佳位置,更新粒子的速度和位置;
步骤425,返回步骤422,直到满足最大循环次数或者最佳位置变化小于预设阈值,输出全局最佳粒子即为优化位姿结果。
2.如权利要求1所述的动态车辆检测方法,其特征在于,步骤424利用下式(3)和式(4)更新粒子的速度和位置:
vk=wvk-1+c1r1(pbest-pk-1)+c2r2(gbest-pk-1)(3)
pk=pk-1+vk(4)
式中,pbest为个体最佳粒子位置,gbest为全局最佳粒子位置,vk-1、vk分别为上一时刻和当前时刻粒子的速度,pk-1和pk分别为上一时刻和当前时刻粒子位置,w为惯性因子,c1和c2为加速常数,r1和r2为两随机数。
3.如权利要求1或2所述的动态车辆检测方法,其特征在于,步骤2具体包括:
步骤21,将点云聚类投影到水平面极坐标网格图中,在点云投影所覆盖的各径向扇形区域中,将距离网格图中心最近的网格状态设置为“占用”状态,“占用”状态的网格所在圆周与距离网格图中心径向最远的有点云投影的网格所在圆周之间的网格的状态设置为“遮挡”状态,没有点云投影的网格的状态设置为“自由”状态;
步骤22,统一相邻两帧点云的坐标系,并将该相邻两帧点云的网格图中的网格状态进行差分运算,计算每个点云聚类在相邻两帧点云中状态改变的网格数量,若状...
【专利技术属性】
技术研发人员:刘凯琪,王建强,许庆,李克强,
申请(专利权)人:清华大学,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。