【技术实现步骤摘要】
基于特征空间的车道线处理方法、装置、车载终端和介质
本申请涉及自动驾驶
,特别是涉及一种基于特征空间的车道线处理方法、装置、车载终端和存储介质。
技术介绍
随着自动驾驶技术的发展,出现了由车载终端通过车辆搭载的图像采集设备为车辆在道路上行驶过程中对车道线进行处理的技术,例如,其可以依赖于计算机视觉技术,设计相应算法从图像采集设备实时采集的道路图像中提取车道线信息从而识别车道线。目前的技术所提供的车道线处理算法,一般是先利用车道线具有的例如边缘特征、颜色特征和结构特征等特征从道路图像中提取车道线上的点,然后通过反投影变换(InversePerspectiveMapping,IPM)将所提取的这些车道线上的点投影到鸟瞰图中,接着利用霍夫变换或者直线段检测算法进行直线检测、滤除掉一些噪声点得到候选点,并对得到的候选点进行聚类得到车道线点。然而,这种技术中由于反投影变换非常容易受到路况的影响,使得基于反投影变换的直线检测和车道线点聚类的准确性较低,导致这种技术难以适应于复杂路况,不能在真实场景中稳定工作,对车道线进行处理的鲁棒性较低。
技术实现思路
基于此,有必要针对上述技术问题,提供一种基于特征空间的车道线处理方法、装置、车载终端和存储介质。一种基于特征空间的车道线处理方法,所述方法包括:获取道路图像;基于所述道路图像,获取针对所述道路图像中各车道线的车道线分割结果,以及获取构成所述各车道线的点的特征向量;确定所述特征向量在特征空间中形成的聚类中心; ...
【技术保护点】
1.一种基于特征空间的车道线处理方法,其特征在于,所述方法包括:/n获取道路图像;/n基于所述道路图像,获取针对所述道路图像中各车道线的车道线分割结果,以及获取构成所述各车道线的点的特征向量;/n确定所述特征向量在特征空间中形成的聚类中心;/n根据各聚类中心与所述特征空间中参考点的相对位置,确定对应于目标车道线的聚类中心;/n获取所述对应于目标车道线的聚类中心表征的针对所述目标车道线的特征向量聚类结果;/n基于所述特征向量聚类结果与所述车道线分割结果之间的对应关系,利用与所述特征向量聚类结果对应的车道线分割结果,处理所述道路图像中的所述目标车道线。/n
【技术特征摘要】
1.一种基于特征空间的车道线处理方法,其特征在于,所述方法包括:
获取道路图像;
基于所述道路图像,获取针对所述道路图像中各车道线的车道线分割结果,以及获取构成所述各车道线的点的特征向量;
确定所述特征向量在特征空间中形成的聚类中心;
根据各聚类中心与所述特征空间中参考点的相对位置,确定对应于目标车道线的聚类中心;
获取所述对应于目标车道线的聚类中心表征的针对所述目标车道线的特征向量聚类结果;
基于所述特征向量聚类结果与所述车道线分割结果之间的对应关系,利用与所述特征向量聚类结果对应的车道线分割结果,处理所述道路图像中的所述目标车道线。
2.根据权利要求1所述的方法,其特征在于,所述目标车道线包括构成当前车道的第一车道线和第二车道线;所述当前车道为车辆当前行驶的车道;所述聚类中心包括对应于所述第一车道线的第一聚类中心以及对应于所述第二车道线的第二聚类中心;所述参考点为所述特征空间的原点;
所述根据各聚类中心与所述特征空间中参考点的相对位置,确定对应于目标车道线的聚类中心之后,所述方法还包括:
获取所述第一聚类中心与所述参考点在所述特征空间的第一特征维度的第一相对距离,以及获取所述第二聚类中心与所述参考点在所述第一特征维度的第二相对距离;
根据所述第一相对距离和所述第二相对距离的相对大小,检测所述车辆是否偏向所述第一车道线或者所述第二车道线行驶。
3.根据权利要求2所述的方法,其特征在于,所述根据所述第一相对距离和所述第二相对距离的相对大小,检测所述车辆是否偏向所述第一车道线或者所述第二车道线行驶,包括:
若所述第一相对距离小于所述第二相对距离,则判断所述车辆偏向所述第一车道线行驶,当所述第一相对距离小于车道偏离阈值时,提示所述第一车道线所在侧的车道偏离预警信息;
若所述第二相对距离小于所述第一相对距离,则判断所述车辆偏向所述第二车道线行驶,当所述第二相对距离小于所述车道偏离阈值时,提示所述第二车道线所在侧的车道偏离预警信息。
4.根据权利要求1所述的方法,其特征在于,所述目标车道线包括构成当前车道的第一车道线和第二车道线;所述当前车道为车辆当前行驶的车道;所述聚类中心包括对应于所述第一车道线的第一聚类中心以及对应于所述第二车道线的第二聚类中心;所述参考点为所述特征空间的原点;
所述根据各聚类中心与所述特征空间中参考点的相对位置,确定对应于目标车道线的聚类中心,包括:
根据所述各聚类中心分别与所述参考点在所述特征空间的第一特征维度的相对位置,确定第一聚类中心集和第二聚类中心集;所述第一聚类中心集包括与所述第一车道线所在侧的车道线相对应的聚类中心;所述第二聚类中心集包括与所述第二车道线所在侧的车道线相对应的聚类中心;
将所述第一聚类中心集中在所述特征空间的第二特征维度上具有最小特征值的聚类中心作为所述第一聚类中心,以及,将所述第二聚类中心集中在所述特征空间的第二特征维度具有最小特征值的聚类中心作为所述第二聚类中心。
5.根据权利要求1所述的方法,其特征在于,所述道路图像为道路视频中的当前帧图像;所述根据各聚类中心与所述特征空间中参考点的相对位置,确定对应于目标车道线的聚类中心之后,所述方法还包括:
将基于所述当前帧图像确定的对应于所述目标车道线的聚类中心,作为所述目标车道线的当前帧聚类中心;
将基于所述当前帧图像的前一帧图像确定的对应于所述目标车道线的聚类中心,作为所述目标车道线的前一帧聚类中心;
根据所述当前帧聚类中心与所述前一帧聚类中心在所述特征空间中的相对距离,确定对所述目标车道线的跟踪结果。
6.根据权利要求5所述的方法,其特征在于,所述根据所述当前帧聚类中心与所述前一帧聚类中心在所述特征空间中的相对距离,确定对所述目标车道线的跟踪结果,包括:
若所述当前帧聚类中心与所述前一帧聚类中心在所述特征空间中的相对距离小于车道跟踪阈值,则确定所述跟踪结果为对所述目标车道线的跟踪正常;
若所述当前帧聚类中心与所述前一帧聚类中心在所述特征空间中的相对距离大于或者等于所述车道跟踪阈值...
【专利技术属性】
技术研发人员:李宇明,刘国清,郑伟,杨广,
申请(专利权)人:深圳佑驾创新科技有限公司,
类型:发明
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。