本申请公开了改性纳米氧化石墨烯作为低渗油藏提高采收率化学剂应用。所述改性纳米氧化石墨烯由微晶石墨氧化、剥离得到微晶氧化石墨烯,再经改性剂修饰改性而成。将所述改性纳米氧化石墨烯与水混合形成流体注入低渗油藏地层,可以有效提高石油采收率。改性的纳米氧化石墨烯材料为柔性片层结构,尺寸小于300nm,适应低渗油藏的孔喉大小,不会对地层造成堵塞等伤害,而且所述改性材料在地层吸附损耗小,耐温耐盐性能优异,将有助于克服目前低渗油藏开发过程中面临的问题。
【技术实现步骤摘要】
改性纳米氧化石墨烯作为低渗油藏提高采收率化学剂的应用
本申请涉及改性纳米氧化石墨烯作为低渗油藏提高采收率化学剂应用,属于化学材料领域。
技术介绍
石油在国民经济中有着不可替代的作用,随着我国国民经济的迅速增长,对石油的需求也在不断地快速提高。根据《中国油气产业发展分析与展望报告蓝皮书(2018—2019)》中的数据,2018年我国原油产量1.89亿吨,原油进口量4.62亿吨,对外依存度攀升至近70%。而经过一次采油、二次采油之后,地下依然有丰富的石油存量,但开采难度逐渐增大,特别是渗透率低于50mD的低渗油藏,巨大的石油储量难以动用。因此针对低渗油藏开发高效的提高采收率技术是实现国家能源安全迫切的战略需求。低渗油藏广泛分布于全国20多个油区,自上个世纪90年代以来在大庆、吉林、辽河、胜利、长庆等主要油田陆续发现了许多低渗油藏。据统计,新探明的石油地质储量中,低渗油藏储量所占的比例高达60%~70%,低渗油藏是我国今后相当长一段时间内增产增储的主要基础。目前用于低渗油藏的提高采收率技术包括水驱、表面活性剂驱、聚合物驱、微生物驱和复合驱等技术体系。现有技术在低渗油藏的应用都存在着各式各样的问题。低渗油藏水驱的波及面积小,易水窜水淹,驱油效率低,水驱采收率仅20%左右,大部分原油滞留在油藏中无法采出。表面活性剂驱技术在现场应用时存在地层吸附损耗高、不耐二价盐、产出液油水乳化难处理等问题。而由于低渗油藏的喉道细小、孔隙结构复杂,聚合物驱在低渗油藏应用时存在地层堵塞、不耐高温高盐的问题,导致其不能有效提高采收率。而微生物驱油技术存在见效时间短、激活剂窜流、驱油效率不理想等问题。二元、三元复合驱技术不仅存在上述问题,而且由于大量化学品注入地层后,不易生物降解,会造成地下水资源污染和油藏生态环境的破坏。目前,将纳米材料驱油技术应用于低渗油藏的研究报道较少,主要为改性的纳米二氧化硅材料。专利申请号CN201810838339.7公布了一种包含鼠李糖脂表面活性剂、纳米二氧化硅的纳米颗粒悬浮液及其在低渗透油藏提高采收率中的应用。但是纳米二氧化硅材料应用于低渗油藏时,依然会存在地层吸附大、不耐高温高盐等局限性。
技术实现思路
根据本申请的第一方面,提供了改性纳米氧化石墨烯作为低渗油藏提高采收率化学剂应用,由于改性的纳米氧化石墨烯材料尺寸小于300nm,而且是柔性片层结构,可以通过形变适应低渗油藏的孔喉大小,地层吸附损耗小,能够耐受高温高盐条件,将有助于克服目前低渗油藏开发过程中面临的问题。所述改性纳米氧化石墨烯作为油藏提高采收率化学剂应用,所述改性纳米氧化石墨烯由微晶氧化石墨烯经改性剂改性而成,所述改性纳米氧化石墨烯的粒径≤300nm,将所述改性纳米氧化石墨烯与矿化水混合形成流体注入油藏地层。可选地,将所述改性纳米氧化石墨烯与矿化水混合形成质量浓度为0.05~0.2%流体注入油藏地层。可选地,所述油藏是指渗透率低于50mD的低渗透油藏。可选地,所述微晶氧化石墨烯为粒径≤200nm的微晶氧化石墨烯,可选地,所述微晶氧化石墨烯的粒径上限可选自150nm、100nm,优选所述微晶氧化石墨烯的粒径为50~100nm。可选地,所述微晶氧化石墨烯的制备方法包括:对微晶石墨粉进行氧化,得到微晶氧化石墨,其中,微晶石墨粉碳含量可选75~100wt%;对所述微晶氧化石墨进行剥离、除杂得到粒径≤200nm的微晶氧化石墨烯。通过采用微晶石墨粉作为原料,一方面原料来源广,可有效降低改性纳米石墨烯的生产成本,便于提高采收率化学剂推广应用;另一方面,微晶石墨中石墨的粒径远远小于鳞片石墨中石墨的粒径,以微晶石墨为原料可以获得尺寸更小的改性纳米氧化石墨烯材料。可选地,所述微晶石墨粉的粒径为≤5μm。可选地,所述微晶石墨粉的粒径为100nm~5μm;所述微晶石墨粉的粒径上限可选自5μm、1.6μm、1.3μm、1μm、900nm、800nm、700nm、600nm、500nm、400nm、300nm或200nm,下限可选自1.6μm、1.3μm、1μm、900nm、800nm、700nm、600nm、500nm、400nm、300nm、200nm或100nm。优选地,所述微晶石墨粉的粒径为≤1.6μm。微晶石墨粉的粒径≤1.6μm时,可以提高采收率,从而具有优异的驱油性能,并且岩心的吸附较低,损耗较少。采用该粒径范围的微晶石墨粉经过氧化、剥离、除杂后可以得到粒径≤200nm的微晶氧化石墨烯。可选地,所述对微晶石墨粉进行氧化的条件包括:采用化学氧化法,以浓硫酸、高锰酸钾、双氧水作为氧化剂;每克微晶石墨粉对应的浓硫酸用量为20~100克;每克微晶石墨粉对应的高锰酸钾用量为1~5克;所述双氧水浓度为25~40%,每克微晶石墨粉对应双氧水的用量为0.1~1.2克。其他反应条件如搅拌条件、反应温度、反应时间、分离条件、洗涤条件等均与传统Hummers化学氧化法相同。可选地,所述对所述微晶氧化石墨进行剥离的条件包括:通过超声剥离;超声功率为700~750W;优选720w;超声频率为10~30Hz;优选20Hz;超声时间为0.5~2h。通过在该条件下进行超声剥离,极大地缩短了小粒径微晶氧化石墨烯的制备时间,提高了生产效率。进一步地,所述对微晶石墨粉进行氧化、剥离之后,还包括:通过离心方式除杂;离心转速为100~1000rpm;离心时间为5~20min。可选地,离心转速上限可选自1000rpm、800rpm、700rpm、600rpm、500rpm、400rpm、300rpm或200rpm,下限可选自800rpm、700rpm、600rpm、500rpm、400rpm、300rpm、200rpm或100rpm。离心时间上限可选自20min、15min或10min,下限可选自15min、10min或5min。该方法制备过程属于常温常压,操作安全简单,制备的纳米级改性氧化石墨烯提高采收率化学剂在水中具有良好的分散性可选地,所述改性剂包括脂肪醇聚氧乙烯醚、月桂酸二乙醇酰胺、N-乙烯基吡咯烷酮、聚乙烯亚胺、聚乙二醇、油酸、α-烯烃磺酸钠、丙烯酸、丙烯酰胺中的至少一种,所述改性纳米氧化石墨烯的制备方法为:将含有微晶氧化石墨烯分散液、改性剂的混合物,在催化剂作用下反应,得到改性纳米氧化石墨烯。通过使用催化剂使改性剂和位于微晶氧化石墨烯上的羧基、羟基、环氧基发生反应,将改性基团接枝到微晶氧化石墨烯上,从而使微晶氧化石墨烯由亲水转变成既亲水又亲油。当该材料作为应用于石油开采时,可以有效地降低油水之间的界面张力,从而提高石油采收率,经过改性后也提高材料的耐温耐盐性,降低了材料在地层环境的吸附性。可选地,所述微晶氧化石墨烯分散液中,微晶氧化石墨烯的浓度为0.01~30mg/ml。可选地,所述微晶氧化石墨烯和所述改性剂的质本文档来自技高网...
【技术保护点】
1.改性纳米氧化石墨烯作为低渗油藏提高采收率化学剂的应用,其特征在于,所述改性纳米氧化石墨烯由微晶石墨经氧化、剥离、除杂,得到微晶氧化石墨烯,再经改性剂改性而成;/n所述改性纳米氧化石墨烯的粒径≤300nm;/n将所述改性纳米氧化石墨烯与矿化水混合形成流体注入油藏地层。/n
【技术特征摘要】
1.改性纳米氧化石墨烯作为低渗油藏提高采收率化学剂的应用,其特征在于,所述改性纳米氧化石墨烯由微晶石墨经氧化、剥离、除杂,得到微晶氧化石墨烯,再经改性剂改性而成;
所述改性纳米氧化石墨烯的粒径≤300nm;
将所述改性纳米氧化石墨烯与矿化水混合形成流体注入油藏地层。
2.根据权利要求1所述的应用,其特征在于,在所述流体中,所述改性纳米氧化石墨烯的质量浓度为0.05~0.2%;
优选地,所述微晶氧化石墨烯的粒径≤200nm。
3.根据权利要求2所述的应用,其特征在于,所述微晶氧化石墨烯的制备方法包括:
对微晶石墨粉进行氧化,得到微晶氧化石墨;
对所述微晶氧化石墨进行剥离、除杂,得到微晶氧化石墨烯。
4.根据权利要求3所述的应用,其特征在于,所述微晶石墨粉的粒径为≤5μm;对所述微晶氧化石墨进行剥离、除杂后得到的微晶氧化石墨烯的粒径为≤200nm;
优选地,所述微晶石墨粉的粒径为≤1.6μm。
5.根据权利要求3所述的应用,其特征在于,所述对微晶石墨粉进行氧化的条件包括:
采用化学氧化法,以浓硫酸、高锰酸钾和双氧水作为氧化剂;
每克微晶石墨粉对应的浓硫酸用量为20~100克;
每克微晶石墨粉对应的高锰酸钾用量为1~5克;
所述双氧水浓度为25~40%,每克微晶石墨粉对应双氧水的用量为0.1~1.2克。<...
【专利技术属性】
技术研发人员:明亮,俞波,王耀国,
申请(专利权)人:宁波锋成先进能源材料研究院,
类型:发明
国别省市:浙江;33
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。