光学成像系统技术方案

技术编号:24635860 阅读:22 留言:0更新日期:2020-06-24 14:08
一种光学成像系统,由物侧至像侧依序包含第一透镜、第二透镜、第三透镜以及第四透镜。第一透镜具有屈折力,其物侧面可为凸面。第二透镜至第三透镜具有屈折力,前述各透镜的两表面可皆为非球面。第四透镜可具有正屈折力,其两表面皆为非球面,其中第四透镜的至少一表面可具有反曲点。光学成像系统中具屈折力的透镜为第一透镜至第四透镜。当满足特定条件时,可具备更大的收光以及更佳的光路调节能力,以提升成像质量。

Optical imaging system

【技术实现步骤摘要】
光学成像系统
本技术是有关于一种光学成像系统,且特别是有关于一种应用于电子产品上的小型化光学成像系统。
技术介绍
近年来,随着具有摄影功能的可携式电子产品的兴起,光学系统的需求日渐提高。一般光学系统的感光元件不外乎是感光耦合元件(ChargeCoupledDevice;CCD)或互补性氧化金属半导体元件(ComplementaryMetal-OxideSemiconduTPorSensor;CMOSSensor)两种,且随着半导体制造技术的进步,使得感光元件的像素尺寸缩小,光学系统逐渐往高像素方向发展,因此对成像质量的要求也日益增加。传统搭载于便携设备上的光学系统,多采用两片或三片式透镜结构,然而,由于便携设备不断朝像素提升方向发展,并且终端消费者对大光圈的需求逐渐增加,例如微光与夜拍功能,以及对广视角的需求也逐渐增加,例如前置镜头的自拍功能。但是,设计大光圈的光学系统常面临产生更多像差致使周边成像质量随之劣化以及制造难易度的处境,而设计广视角的光学系统则会面临成像的畸变率(distortion)提高,现有的光学成像系统已无法满足更高阶的摄影要求。因此,如何有效增加光学成像镜头的进光量与增加光学成像镜头的视角,除进一步提高成像的总像素与质量外同时能兼顾微型化光学成像镜头的衡平设计,便成为一个相当重要的议题。
技术实现思路
本技术实施例的态样针对一种光学成像系统及光学影像撷取镜头,能够利用四个透镜的屈光力、凸面与凹面的组合(本技术所述凸面或凹面原则上指各透镜的物侧面或像侧面于光轴上的几何形状描述),进而有效提高光学成像系统的进光量与增加光学成像镜头的视角,同时具备一定相对照度以及提高成像的总像素与质量,以应用于小型的电子产品上。此外,在特定光学成像应用领域,有需要同时针对可见光以及红外光波长的光源进行成像,例如IP影像监控摄影机。IP影像监控摄影机所具备的「日夜功能(Day&Night)」,主要是因人类的可见光在光谱上位于400-700nm,但传感器的成像,包含了人类不可见红外光,因此为了要确保传感器最后仅保留了人眼可见光,可视情况在镜头前设置卸除式红外线阻绝滤光片(IRCutfilterRemovable,ICR)以增加影像的「真实度」,其可在白天的时候杜绝红外光、避免色偏;夜晚的时候则让红外光进来提升亮度。然而,ICR元件本身占据相当体积且价格昂贵,不利未来微型监控摄影机的设计与制造。本技术实施例的态样同时针对一种光学成像系统及光学影像撷取镜头,能够利用四个透镜的屈光力、凸面与凹面的组合以及材质的选用,令光学成像系统对于可见光的成像焦距以及红外光的成像焦距间的差距缩减,亦即达到接近「共焦」的效果,因此无需使用ICR元件。本技术实施例相关的透镜参数的用语与其代号详列如下,作为后续描述的参考:与光学成像系统及光学影像撷取镜头的放大率有关的透镜参数本技术的光学成像系统及光学影像撷取镜头同时可设计应用于生物特征辨识,例如使用于脸孔辨识。本技术的实施例若作为脸孔辨识的影像撷取,可选用以红外光做为工作波长,同时对于距离约25至30公分左右且宽度约15公分的脸孔,可于感光元件(像素尺寸为1.4微米(μm))于水平方向上至少成像出30个水平像素。红外光成像面的线放大率为LM,其满足下列条件:LM=(30个水平像素)乘以(像素尺寸1.4微米)除以被摄物体宽度15公分;LM0.0003。同时,以可见光做为工作波长,同时对于距离约25至30公分左右且宽度约15公分的脸孔,可于感光元件(像素尺寸为1.4微米(μm))于水平方向上至少成像出50个水平像素。与长度或高度有关的透镜参数本技术于可见光频谱可选用波长555nm作为主要参考波长以及衡量焦点偏移的基准,于红外光频谱(700nm至1300nm)可选用波长850nm作为主要参考波长以及衡量焦点偏移的基准。光学成像系统具有一第一成像面以及一第二成像面,第一成像面为一特定垂直于光轴的可见光像平面并且其中心视场于第一空间频率的离焦调制转换对比转移率(MTF)有最大值;以及第二成像面为一特定垂直于光轴的红外光像平面并且其中心视场于第一空间频率的离焦调制转换对比转移率(MTF)有最大值。光学成像系统另具有一第一平均成像面以及一第二平均成像面,第一平均成像面为一特定垂直于光轴的可见光像平面并且设置于该光学成像系统的中心视场、0.3视场及0.7视场分别于第一空间频率均具有各该视场最大MTF值的离焦位置的平均位置;以及第二平均成像面为一特定垂直于光轴的红外光像平面并且设置于该光学成像系统的中心视场、0.3视场及0.7视场分别于第一空间频率均具有各该视场最大MTF值的离焦位置的平均位置。前述第一空间频率设定为本技术所使用的感光元件(传感器)的半数空间频率(半频),例如像素大小(PixelSize)为含1.12微米以下的感光元件,其调制转换函数特性图的四分之一空间频率、半数空间频率(半频)以及完全空间频率(全频)分别至少为110cycles/mm、220cycles/mm以及440cycles/mm。任一视场的光线均可进一步分为弧矢面光线(sagittalray)以及子午面光线(tangentialray)。本技术光学成像系统的可见光中心视场、0.3视场、0.7视场的弧矢面光线的离焦MTF最大值的焦点偏移量分别以VSFS0、VSFS3、VSFS7表示(度量单位:mm);可见光中心视场、0.3视场、0.7视场的弧矢面光线的离焦MTF最大值分别以VSMTF0、VSMTF3、VSMTF7表示;可见光中心视场、0.3视场、0.7视场的子午面光线的离焦MTF最大值的焦点偏移量分别以VTFS0、VTFS3、VTFS7表示(度量单位:mm);可见光中心视场、0.3视场、0.7视场的子午面光线的离焦MTF最大值分别以VTMTF0、VTMTF3、VTMTF7表示。前述可见光弧矢面三视场以及可见光子午面三视场的焦点偏移量的平均焦点偏移量(位置)以AVFS表示(度量单位:mm),其满足绝对值│(VSFS0+VSFS3+VSFS7+VTFS0+VTFS3+VTFS7)/6│。本技术光学成像系统的红外光中心视场、0.3视场、0.7视场的弧矢面光线的离焦MTF最大值的焦点偏移量分别以ISFS0、ISFS3、ISFS7表示,前述弧矢面三视场的焦点偏移量的平均焦点偏移量(位置)以AISFS表示(度量单位:mm);红外光中心视场、0.3视场、0.7视场的弧矢面光线的离焦MTF最大值分别以ISMTF0、ISMTF3、ISMTF7表示;红外光中心视场、0.3视场、0.7视场的子午面光线的离焦MTF最大值的焦点偏移量分别以ITFS0、ITFS3、ITFS7表示(度量单位:mm),前述子午面三视场的焦点偏移量的平均焦点偏移量(位置)以AITFS表示(度量单位:mm);红外光中心视场、0.3视场、0.7视场的子午面光线的离焦MTF最大值分别以ITMTF0、ITMTF3、ITMTF7表示。前述红外光弧矢面三视场以本文档来自技高网...

【技术保护点】
1.一种光学成像系统,其特征在于,由物侧至像侧依序包含:/n一第一透镜,具有屈折力;/n一第二透镜,具有屈折力;/n一第三透镜,具有负屈折力;/n一第四透镜,具有屈折力;/n一第一成像面,其为一特定垂直于光轴的可见光像平面并且其中心视场于第一空间频率的离焦调制转换对比转移率有最大值;以及/n一第二成像面,其为一特定垂直于光轴的红外光像平面并且其中心视场于第一空间频率的离焦调制转换对比转移率有最大值,其中该光学成像系统具有屈折力的透镜为四枚,该第一透镜、该第二透镜与该第四透镜中至少一透镜具有正屈折力,该第一透镜至该第四透镜的焦距分别为f1、f2、f3、f4,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该第一透镜物侧面至该第一成像面于光轴上的距离为HOS,该第一透镜物侧面至该第四透镜像侧面于光轴上的距离为InTL,该光学成像系统的最大可视角度的一半为HAF,该光学成像系统于该第一成像面上垂直于光轴具有一最大成像高度HOI,该第一成像面与该第二成像面间于光轴上的距离为FS;其满足下列条件:1≤f/HEP≤10;0deg<HAF≤150deg;以及│FS│≤25μm。/n...

【技术特征摘要】
20190830 TW 1082116181.一种光学成像系统,其特征在于,由物侧至像侧依序包含:
一第一透镜,具有屈折力;
一第二透镜,具有屈折力;
一第三透镜,具有负屈折力;
一第四透镜,具有屈折力;
一第一成像面,其为一特定垂直于光轴的可见光像平面并且其中心视场于第一空间频率的离焦调制转换对比转移率有最大值;以及
一第二成像面,其为一特定垂直于光轴的红外光像平面并且其中心视场于第一空间频率的离焦调制转换对比转移率有最大值,其中该光学成像系统具有屈折力的透镜为四枚,该第一透镜、该第二透镜与该第四透镜中至少一透镜具有正屈折力,该第一透镜至该第四透镜的焦距分别为f1、f2、f3、f4,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该第一透镜物侧面至该第一成像面于光轴上的距离为HOS,该第一透镜物侧面至该第四透镜像侧面于光轴上的距离为InTL,该光学成像系统的最大可视角度的一半为HAF,该光学成像系统于该第一成像面上垂直于光轴具有一最大成像高度HOI,该第一成像面与该第二成像面间于光轴上的距离为FS;其满足下列条件:1≤f/HEP≤10;0deg<HAF≤150deg;以及│FS│≤25μm。


2.如权利要求1所述的光学成像系统,其特征在于,该红外光的波长介于700nm至1300nm以及该第一空间频率以SP1表示,其满足下列条件:SP1≤440cycles/mm。


3.如权利要求1所述的光学成像系统,其特征在于,该第一透镜至该第四透镜中任一透镜的任一表面与光轴的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为ARE,其满足下列条件:0.9≤2×(ARE/HEP)≤2.0。


4.如权利要求1所述的光学成像系统,其特征在于,该第四透镜具有负屈折力。


5.如权利要求1所述的光学成像系统,其特征在于,该第二透镜具有正屈折力。


6.如权利要求1所述的光学成像系统,其特征在于,该光学成像系统满足下列条件:1≤f1/f2≤2。


7.如权利要求1所述的光学成像系统,其特征在于,该第四透镜的物侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为ARE41,该第四透镜的像侧表面于光轴上的交点为起点,沿着该表面的轮廓直到该表面上距离光轴1/2入射瞳直径的垂直高度处的坐标点为终点,前述起点与终点间的轮廓曲线长度为ARE42,第四透镜于光轴上的厚度为TP4,其满足下列条件:0.05≤ARE41/TP4≤25;以及0.05≤ARE42/TP4≤25。


8.如权利要求1所述的光学成像系统,其特征在于,该第一透镜为负屈折力,其中该光学成像系统于结像时的TV畸变为TDT,该光学成像系统的正向子午面光扇的最长工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以PLTA表示,其正向子午面光扇的最短工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以PSTA表示,负向子午面光扇的最长工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以NLTA表示,负向子午面光扇的最短工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以NSTA表示,弧矢面光扇的最长工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以SLTA表示,弧矢面光扇的最短工作波长通过该入射瞳边缘并入射在该成像面上0.7HOI处的横向像差以SSTA表示,其满足下列条件:PLTA≤100微米;PSTA≤100微米;NLTA≤100微米;NSTA≤100微米;SLTA≤100微米;以及SSTA≤100微米;│TDT│<100%。


9.如权利要求1所述的光学成像系统,其特征在于,更包括一光圈,并且于该光圈至该第一成像面于光轴上的距离为InS,其满足下列公式:0.2≤InS/HOS≤1.1。


10.一种光学成像系统,其特征在于,由物侧至像侧依序包含:
一第一透镜,具有屈折力;
一第二透镜,具有正屈折力;
一第三透镜,具有负屈折力;
一第四透镜,具有屈折力;
一第一成像面,其为一特定垂直于光轴的可见光像平面并且其中心视场于第一空间频率的离焦调制转换对比转移率有最大值,第一空间频率为220cycles/mm;以及
一第二成像面,其为一特定垂直于光轴的红外光像平面并且其中心视场于第一空间频率的离焦调制转换对比转移率有最大值,其中该光学成像系统具有屈折力的透镜为四枚,该第一透镜至该第四透镜的焦距分别为f1、f2、f3、f4,该光学成像系统的焦距为f,该光学成像系统的入射瞳直径为HEP,该第一透镜物侧面至该第一成像面于光轴上的距离为HOS,该第一透镜物侧面至该第四透镜像侧面于光轴上的距离为InTL,该光学成像系统的最大可视角度的一半为HAF,该光学成像系统于该第一成像面上垂直于光轴具有一最大成像高度HOI,该第一透镜至该第四透镜中任一透镜的任一表面与光轴的交点为起点,沿着该表面的轮廓直到该表面...

【专利技术属性】
技术研发人员:张永明赖建勋刘燿维
申请(专利权)人:先进光电科技股份有限公司
类型:新型
国别省市:中国台湾;71

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1