本实用新型专利技术公开一种低压外输气乙烷回收装置,涉及天然气加工技术领域。此装置基于膨胀制冷技术,大部分气体通过膨胀降压降温获得冷量。通过多级分离原料气,形成脱甲烷塔五股进料,有效的提高了脱甲烷塔的分离效率。侧线重沸器和塔底重沸器均与原料气换热,合理利用系统内部热量。所述装置提高了系统冷热利用率和乙烷回收率。
A kind of ethane recovery device for low pressure export gas
【技术实现步骤摘要】
一种低压外输气乙烷回收装置
本技术涉及天然气加工
,具体为一种低压外输气乙烷回收装置。
技术介绍
近年来,随着天然气工业的发展,应用膨胀机制冷回收天然气凝液的技术得到迅猛发展,膨胀机制冷工艺利用原料气压差获得冷量,通过改变膨胀比来调节系统冷量。小型的油气田的油气产量较小,但部分油气田所产伴生气或凝析气中乙烷及更重组分含量较高,对其凝液进行回收可获得可观的经济价值。由于产量不大,这类油气田所产天然气通常用于供给附近地区居民用气,因此外输气要求的压力较低(1.6MPa~2.0MPa),外输气无需增压。现有的乙烷回收装置通常通过利用部分增压后的外输干气,但对于不增压外输的装置,没有有效的手段利用外输气回流制冷,因此乙烷回收装置的回收率很难提高;现有的乙烷回收工艺在控制CO2冻堵的控制方面也存在很多不足,对于含有一定量CO2(摩尔分数小于1%)的贫气,CO2冻堵余量(塔板操作温度与CO2干冰生成温度之差)很难大于4℃。外输气不增压的要求下,现有适用的乙烷回收装置流程图如图2所示,其流程是天然气经主冷箱E21换热降温后进入低温分离器V21分离,低温分离器的气相经膨胀机膨胀降压降温后送入脱甲烷塔T21的中上部,低温分离器V21的液相进入过冷冷箱T12降温后分为两路,一部分经过节流阀降压降温后再次进入过冷冷箱T12升温,之后进入脱甲烷塔T21中下部,另一部分则经过调压后进入脱甲烷塔T21顶。脱甲烷塔中下部设置一股侧线抽出与原料气换热,塔底重沸器与原料气换热,以充分利用热能。根据工程经验,此类装置的乙烷回收率一般低于90%,外输气中还存在很多的重组分,这使得在外输压力要求低的情况下,现有乙烷回收装置的可调节性较差,经济效益低。为了克服现有流程的不足,降低天然气乙烷回收装置的系统能耗,本技术针对要求较高的乙烷回收率(>90%)和较低的外输压力(1.6MPa~2MPa)的工况,提出了一种低压外输气乙烷回收装置,此装置通过分流部分原料气,通过低温分离、气相过冷液化作为塔顶进料,相比现有流程有效的降低塔顶物流的重烃含量,提高乙烷回收率,降低系统能耗。
技术实现思路
本技术所要解决的技术问题是提供一种高效的低压外输气乙烷回收装置,以合理利用了原料气的压力能,降低系统能耗,提高装置的经济效益。本技术解决上述技术问题所提供的技术方案是:一种低压外输气乙烷回收装置,其特征在于,膨胀机组压缩端K11依次与原料气空冷器A11、预分离器V11相连;预分离器V11气相出口依次与第一冷箱E11、一级低温分离器V12相连,预分离器V11液相出口与脱甲烷塔自上而下第五个进口相连;一级低温分离器V12气相出口依次与第二冷箱E12、二级低温分离器V13相连,一级低温分离器V12液相出口与脱甲烷塔自上而下第五个进口相连。进一步的技术方案是,二级低温分离器V13气相分为两路,一路(约占总流量的30%)依次与第三冷箱E13、塔顶分离器V14相连,另一路(约占总流量的70%)依次与膨胀机组膨胀端K12、脱甲烷塔自上而下第三个进口相连,二级低温分离器V13液相与脱甲烷塔自上而下第四个进口相连;塔顶分离器V14气相依次与第四冷箱E14、脱甲烷塔T11顶部进口相连,塔顶分离器V14液相与脱甲烷塔T11自上而下第二个进口相连。进一步的技术方案是,脱甲烷塔T11底液为乙烷及乙烷以上的凝液混合物产品,脱甲烷塔T11顶气相出口依次与第四冷箱E14、第三冷箱E13、第二冷箱E12、第一冷箱E11相连,实现低温外输气与高温原料气的换热。进一步的技术方案是,脱甲烷塔T11设置一个侧线抽出循环与第二冷箱E12相连,用原料气的热量加热脱甲烷塔中下部液相使其部分气化;脱甲烷塔T11设置一个塔底抽出循环与第一冷箱E11相连,用原料气的热量加热脱甲烷塔底部液相使其部分气化。进一步的技术方案是,第二冷箱设置一个外加冷剂通道,为原料气的冷凝过程提供外部冷量,所述冷剂包括但不限于丙烷、乙烯等工业制冷剂。采用上述技术方案所产生的有益效果是:大部分原料气进入膨胀机组膨胀端,通过膨胀降压为系统提供能量和动能,少部分原料气通过冷凝分离再过冷进入塔顶的方式,低温气化吸收制冷提高乙烷回收率;应用多级预冷、多级分离改善脱甲烷塔顶部回流,使脱甲烷塔顶进料中乙烷及以上组分更少,提高塔顶精馏效果,有效提高乙烷回收率;设置侧重沸线和塔底重沸器与原料气换热,有效利用增压后原料气的热能。附图说明图1是本技术的工艺流程图;图1中所示:K11-膨胀机组增压端、A11-空冷器、V11-预分离器、E11-第一冷箱、V12-一级低温分离器、E12-第二冷箱、V13-二级低温分离器、E13-第三冷箱、V14-塔顶分离器、E14-第四冷箱、K12-膨胀机组膨胀端、T11-脱甲烷塔;图2是现有的适用于低压天然气乙烷回收装置的工艺流程图;图2中所示:K21-膨胀机组增压端、A21-空冷器、E21-主冷箱、V21-低温分离器、K21-同轴膨胀机组、E22-液相过冷冷箱、T21-脱甲烷塔;具体实施方式下面结合本技术实施例中的附图1,对本技术实施例中的技术方案进行清楚、完整地描述。如图1所示,原料气气质组成及工况条件(绝压)原料气处理规模:150×104Nm3/d原料气压力:5MPa原料气温度:28℃干气外输压力:≥1.6MPa原料气组成见表1。表1原料气组成组分N2CO2C1C2C3iC4nC4iC5mol%2.07770.010087.09405.44402.39740.39430.78570.2866组分nC5C6C7C8C9C10+H2Omol%0.33560.39580.25350.09030.02250.02600.7632如图1所示,本技术公开了一种低压外输气乙烷回收方法,自脱水增压单元来的原料气(5MPa、28℃),再经过膨胀机增压端K11增压后进入空冷器A11冷却至40℃、压力达到4.95MPa。原料气之后进入预分离器V11,在预分离器中分出气液两相。预分离器V11的液相经过调压后从中下部(第五进口)进入脱甲烷塔T11的液相,预分离器V11的气相出料进入第一冷箱E11降温至-20℃后,进入一级低温分离器V12,在一级低温分离器V12中分离出气液两相。一级低温分离器V12的液相和预分离器V11的液相混合并经过调压后进入脱甲烷塔T11中下部(第五进口),一级低温分离器V12的气相则经第二冷箱进一步本文档来自技高网...
【技术保护点】
1.一种低压外输气乙烷回收装置,其特征在于,膨胀机组压缩端K11依次与原料气空冷器A11、预分离器V11相连;预分离器V11气相出口依次与第一冷箱E11、一级低温分离器V12相连,预分离器V11液相出口与脱甲烷塔自上而下第五个进口相连;一级低温分离器V12气相出口依次与第二冷箱E12、二级低温分离器V13相连,一级低温分离器V12液相出口与脱甲烷塔自上而下第五个进口相连。/n
【技术特征摘要】
1.一种低压外输气乙烷回收装置,其特征在于,膨胀机组压缩端K11依次与原料气空冷器A11、预分离器V11相连;预分离器V11气相出口依次与第一冷箱E11、一级低温分离器V12相连,预分离器V11液相出口与脱甲烷塔自上而下第五个进口相连;一级低温分离器V12气相出口依次与第二冷箱E12、二级低温分离器V13相连,一级低温分离器V12液相出口与脱甲烷塔自上而下第五个进口相连。
2.根据权利要求1所述的一种低压外输气乙烷回收装置,其特征在于,二级低温分离器V13气相分为两路,一路(约占总流量的25%)依次与第三冷箱E13、塔顶分离器V14相连,另一路(约占总流量的75%)依次与膨胀机组膨胀端K12、脱甲烷塔自上而下第三个进口相连,二级低温分离器V13液相与脱甲烷塔自上而下第四个进口相连;塔顶分离器V14气相依次与第四冷箱E14、脱甲烷塔T11顶部进口相连,塔顶分离器V14液相...
【专利技术属性】
技术研发人员:周灵,蒋洪,张承志,
申请(专利权)人:西南石油大学,
类型:新型
国别省市:四川;51
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。