本发明专利技术公开了一种水下声呐系统点云数据降噪方法,包括以下步骤:(1)基于水声信号反射原理,去除点云数据中没有连通区域的离散数据点;(2)针对点云数据进行旁瓣效应抑制;(3)基于连续多帧点云数据的相关性对噪声进行去除;(4)对点云数据进行动态归一化以处理去除噪声数据和背景数据;(5)针对三维数据结构的点云数据,根据三维点云数据的实际物理含义,将物理上没有意义的点云数据去除。分别对不同噪声采用不同的降噪策略以实现对点数数据进行全面的降噪,提升降噪效果。
A noise reduction method of point cloud data in underwater sonar system
【技术实现步骤摘要】
一种水下声呐系统点云数据降噪方法
本专利技术属于信号处理
,具体涉及一种水下声呐系统点云数据降噪方法。
技术介绍
水下声呐成像是基于声呐点云数据的,因此点云数据的处理好坏直接决定水下声呐成像以及后续一系列声呐数据处理过程,包括从点云数据中提取有用的目标信息,检测水中物体等。由于水中超声信号在原理上会产生特定的水声效应,包括旁瓣效应、混响效应等,并且在信号采集、信号传输过程中也会产生一定的噪声信号,从根源上无法彻底解决数据噪声的问题。噪声的干扰会对目标检测、识别、跟踪等算法带来一定的困难,在数据预处理模块就要对点云数据进行一定的降噪处理能够极大的方便后续流程。申请公布号为CN105785349A的专利申请公开了一种相控阵三维声学摄像声呐的噪声去除方法,该噪声去除方法对噪声进行统一去除,没有进行分类去噪,会造成去噪效果欠佳。申请公布号为CN109035224A的专利申请公开了一种基于多波束点云的海底管道检测与三维重建方法,在该种海底管道检测与三维重建方法中,采用基于密度分析的点云去噪滤波方法对管道的点云数据进行去噪,该单一的去噪方法的去噪效果也欠佳。
技术实现思路
本专利技术的目的是提供一种水下声呐系统点云数据降噪方法,分别对不同噪声采用不同的降噪策略以实现对点数数据进行全面的降噪,提升降噪效果。为实现上述专利技术的目,本专利技术提供以下技术方案:一种水下声呐系统点云数据降噪方法,包括以下步骤:(1)基于水声信号反射原理,去除点云数据中没有连通区域的离散数据点;(2)针对点云数据进行旁瓣效应抑制;(3)基于连续多帧点云数据的相关性对噪声进行去除;(4)对点云数据进行动态归一化以处理去除噪声数据和背景数据;(5)针对三维数据结构的点云数据,根据三维点云数据的实际物理含义,将物理上没有意义的点云数据去除。相较于现有的技术,本专利技术具有以下有益的技术效果:(1)本专利技术提供的水下声呐系统点云数据降噪方法能够显著提高信号有效性,对于数据中的噪声信号能够有效的抑制,因此该降噪方法能够为之后的数据处理流程提供有效的数据支撑,对于水下声呐系统而言具有重要的意义。(2)本专利技术提供的水下声呐系统点云数据降噪方法实现简单,使用现有简单的滤波技术,针对水下声呐系统点云数据中的噪声特点以及水下声呐系统的流程等进行特定场景的降噪处理,针对性强,实用效果好。(3)本专利技术提供的水下声呐系统点云数据降噪方法还可以根据实际应用场景进行微调,以提高点云数据在实际应用场景中的噪声去除效果。附图说明为了更清楚地说明本专利技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做简单地介绍,显而易见地,下面描述中的附图仅仅是本专利技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动前提下,还可以根据这些附图获得其他附图。图1是实施例提供的水下声呐系统处理数据步骤的流程图;图2是实施例提供的水下声呐系统点云数据噪声分类示意图;图3是实施例提供的水下声呐系统点云数据降噪方法的流程图;图4是实施例提供的水下声呐系统点云数据降噪方法中的旁瓣效应抑制步骤流程图;图5是实施例提供的水下声呐系统点云数据降噪方法中的动态归一化步骤流程图。具体实施方式为使本专利技术的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本专利技术进行进一步的详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本专利技术,并不限定本专利技术的保护范围。图1是实施例提供的水下声呐系统处理数据步骤的流程图。如图1所示,水下声呐系统的主要处理流程由A/D芯片采集原始信号,随后进行波束形成处理变成该降噪方法所需要处理的点云数据类型,随后利用该降噪方法进行点云数据降噪处理,经过处理后的数据再根据实际的应用场景进行障碍检测、目标识别或是实时图像显示等。图2是实施例提供的水下声呐系统点云数据噪声分类示意图。如图2所示,水下声呐系统点云数据中主要噪声有:由于声学原理造成的旁瓣效应,线路传输、信号采样等造成的高斯噪声,声学反射衍射等造成的信号混响等。这些信号有些是有一定规律的规律噪声,如旁瓣效应。有些是成随机分布的随机噪声,如信号反射、衍射噪声,传输噪声。图3是实施例提供的水下声呐系统点云数据降噪方法的流程图。如图3所示,该水下声呐系统点云数据降噪方法包括:S101,基于水声信号反射原理,去除点云数据中没有连通区域的离散数据点。基于水声信号反射原理,水声信号照射到目标物体后会在物体周围产生一定的衍射现象,基于此特点,对于单点信号强度较高,但是与周围阵元信号没有关联的点认为是噪声点,应予以去除。通过去除没有连通区域的离散点,能够将点云数据中大部分离散噪声信号进行去除,对于水下声呐点云信号来说,经过初步处理能够达到较为理想的初步去噪效果。声呐系统点云数据噪声主要是一些高斯噪声,在S101的基础上,采用均值滤波方法对点云数据进行降噪处理,以减少点云数据中的随机噪点。该方法能够对S101仍存在的小部分噪声进行滤波操作。S102,针对点云数据进行旁瓣效应抑制。对于声学效应中的旁瓣效应,根据旁瓣特点,第一旁瓣值远小于主瓣值,将旁瓣值去除或降低,以去除旁瓣效应带来的噪声污染,几乎所有强目标数据点都有旁瓣效应,因此该步骤是必须且相对有效的。对于目标数据而言,其目标主瓣的数据相对数量级都是一致的,而对于背景无目标的数据而言,相对数量级较低。按照相同层级中小于主瓣信号一定阈值的数据点都进行去除能够有效的对旁瓣抑制。在抑制旁瓣的同时,对于其他有用数据也不会被抑制掉,因此具有较好的实际可操作性。图4是实施例提供的水下声呐系统点云数据降噪方法中的旁瓣效应抑制步骤流程图,如图4所示,旁瓣效应抑制步骤包括:针对每层采集的点云数据,取出相同物理距离的点云数据,并从中找出最大值的点云数据,将该最大值预设百分比作为筛选阈值,遍历每层所有点云数据,将超过每层对应的筛选阈值的点云数据去除,以去除旁瓣效应带来的噪点;除了去除旁边效应带来的噪声点外,旁瓣效应抑制步骤还包括:将小于最大值预设百分比的点云数据均乘一定的系数以降低旁瓣效应带来的噪点。S103,基于连续多帧点云数据的相关性对噪声进行去除。由于存在目标的点云数据在连续多帧中都会存在,而对于噪声而言,数据在连续多帧中具有相对随机性,因此可以采用多帧滤波方法去除无相关性的随机噪声,具体过程为:针对连续多帧数据中相关性较低的点云数据,直接去除;针对连续多帧数据中相关性较高的点云数据,通过连续多帧的相同位置的中值滤波方法去除图像中的噪点,即利用连续多帧中相同位置的数据均值替代每帧该位置的数据值。实施例中,将每组连续n帧数据中出现次数小于预设频数的点云数据认为是相关性较低的点云数据,剩下点云数据为相关性较高的数据,一般预设频数小于1/2n。当数据源是动态时,也就是采集声呐为运动型时本文档来自技高网...
【技术保护点】
1.一种水下声呐系统点云数据降噪方法,其特征在于,包括以下步骤:/n(1)基于水声信号反射原理,去除点云数据中没有连通区域的离散数据点;/n(2)针对点云数据进行旁瓣效应抑制;/n(3)基于连续多帧点云数据的相关性对噪声进行去除;/n(4)对点云数据进行动态归一化以处理去除噪声数据和背景数据;/n(5)针对三维数据结构的点云数据,根据三维点云数据的实际物理含义,将物理上没有意义的点云数据去除。/n
【技术特征摘要】
1.一种水下声呐系统点云数据降噪方法,其特征在于,包括以下步骤:
(1)基于水声信号反射原理,去除点云数据中没有连通区域的离散数据点;
(2)针对点云数据进行旁瓣效应抑制;
(3)基于连续多帧点云数据的相关性对噪声进行去除;
(4)对点云数据进行动态归一化以处理去除噪声数据和背景数据;
(5)针对三维数据结构的点云数据,根据三维点云数据的实际物理含义,将物理上没有意义的点云数据去除。
2.如权利要求1所述的水下声呐系统点云数据降噪方法,其特征在于,在步骤(1)的基础上,采用均值滤波方法对点云数据进行降噪处理,以减少点云数据中的随机噪点。
3.如权利要求1所述的水下声呐系统点云数据降噪方法,其特征在于,旁瓣效应抑制步骤包括:
针对每层采集的点云数据,取出相同物理距离的点云数据,并从中找出最大值的点云数据,将该最大值预设百分比作为筛选阈值,遍历每层所有点云数据,将超过每层对应的筛选阈值的点云数据去除,以去除旁瓣效应带来的噪点。
4.如权利要求1所述的水下声呐系统点云数据降噪方法,其特征在于,旁瓣效应抑制步骤还包括:将小于最大值预设百分比的点云数据均乘一定的系数以降低旁瓣效应带来的噪...
【专利技术属性】
技术研发人员:吕杰,黄凯钢,
申请(专利权)人:苏州联视泰电子信息技术有限公司,
类型:发明
国别省市:江苏;32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。