一种多级应力及位移控制可伸长锚杆制造技术

技术编号:23842693 阅读:59 留言:0更新日期:2020-04-18 05:07
本发明专利技术提供了一种多级应力及位移控制可伸长锚杆,能有效克服现有技术中的刚性锚杆不能较大范围地适应岩土体位移及应力控制的不足,而背景技术中的一种自伸缩大变形锚杆亦不能对边坡进行分级控制,其主要是以弹性控制,对实际岩土体后续应力增大或形变控制改变的适应能力不够。其解决的技术方案是,包括套管,所述套管包括多节间隔布置的管体,最下端的管体下端连接有底座,最上端的管体上端固定有托盘,每两个相邻管体的圆周端面之间连接有受力弹性体和特定屈服受力抗拉体。

A kind of multi-stage stress and displacement controlled extensible bolt

【技术实现步骤摘要】
一种多级应力及位移控制可伸长锚杆
本专利技术涉及锚杆,特别是一种多级应力及位移控制可伸长锚杆。
技术介绍
锚杆在岩土工程中应用广泛,锚杆加固常用于边坡、基坑、隧道、巷道以及城市地下空间等工程中,在地下深部矿场及能源开采中也常用到。锚杆能主动加固岩土体,能充分发挥岩土体自身的稳定能力,有效控制岩土体形变,最大限度地保持围岩完整性,防止岩土体整体坍塌破坏。同时,锚杆对原岩土体破坏少、扰动小,而且易施工、经济、安全环保的重要特点。在围岩高应力条件下,尤其是在软岩地区,由于受外部加卸荷载、振动冲击等作用下常常表现出大变形特点。而现有技术中的锚杆多数直接将锚杆的一端锚固在锚孔底部,另一端锚固在边坡外侧面上。这种锚杆极限拉伸长度较小,当围岩发生较大变形时,普通锚杆往往不能满足工程安全所要求的适应围岩较大变形而常常出现锚头失效、锚杆被拉断等破坏现象,从而使锚杆的锚固作用丧失,进而导致工程事故。中国技术专利公开了一种自伸缩大变形锚杆,专利号为201621376559.5,该专利的锚杆伸缩量为L,其变形量主要由弹簧及锚杆两部分来承担,此种结构使得该技术主要存在以下不足:其一,若实际工程中出现承重或载荷增大,而允许的变形量又较少,在这种工况下再继续增大锚杆的承载能力变得较为困难,比如更换或是增大弹簧4的强度极为困难,正如0014段中所述锚杆与活塞为一体结构。其二,若实际工程中由于承重或载荷增大,而允许有较大的变形量,在这种工况下由于锚杆的承载能力最大值是一定的,允许的变形量若大于原设计的锚杆最大变形量时,若再增大弹簧4最大伸长量同样较为困难,正如0014段中所述锚杆与活塞为一体结构。
技术实现思路
针对上述情况,为克服现有技术之缺陷,本专利技术提供了一种多级应力及位移控制可伸长锚杆,能有效克服现有技术中的刚性锚杆不能较大范围地适应岩土体位移及应力控制的不足,而
技术介绍
中的一种自伸缩大变形锚杆亦不能对边坡进行分级控制,其主要是以弹性控制,对实际岩土体后续应力增大或形变控制改变的适应能力不够。其解决的技术方案是,包括套管,所述套管包括多节间隔布置的管体,最下端的管体下端连接有底座,最上端的管体上端固定有托盘,每两个相邻管体的圆周端面之间连接有受力弹性体和特定屈服受力抗拉体。优选的,所述受力弹性体的数目与特定屈服受力抗拉体均为多个。优选的,所述受力弹性体与特定屈服受力抗拉体数目一致,所述特定屈服受力抗拉体均匀间隔布置在两个管体之间,所述受力弹性体套在特定屈服受力抗拉体上。优选的,所述受力弹性体外间隔套有套筒。优选的,所述受力弹性体外间隔套有第一伸缩筒,所述第一伸缩筒的两端连接在相邻的两管体之间。优选的,还包括第二伸缩筒,所述第二伸缩筒连接在两相邻管体之间,所述受力弹性体与特定屈服受力抗拉体均置于第二伸缩筒内。优选的,所述托盘中心设有通孔,所述底座上固定有置于套管中与套管同轴心的螺杆,所述螺杆的另一端经通孔穿出,所述螺杆穿出部分上旋拧有螺母。优选的,所述螺母和托盘之间的螺杆上套有受压垫板。优选的,所述管体内固定有对中支架,所述对中支架中心设有与套管同轴心的中心孔,所述螺杆穿过该对中支架的中心孔。优选的,所述受力弹性体为弹簧,所述特定屈服受力抗拉体为钢铰线。本专利技术可允许对所要加固处理的岩土体具有一定的形变量,可以对所要加固的岩土体位移设置一定限值,通过锚固作用改变岩土体受力状态从而达到对岩土体进行位移控制,而当锚杆体所受应力超过设计的某一值时,在工程安全允许范围内将允许岩土体产生一定位移量值。该专利技术可以通过多个管体组成套管,通过两相邻的管体之间的受力弹性体与特定屈服受力抗拉体来对所要加固岩土体进行第一级次的两级控制,通过多节的第一级次控制中的特定屈服受力抗拉体的屈服应力的不同来进行第二级次的多级控制,并通过设置螺母与托盘之间的间距,来进行第三级次的多级控制,以控制所要加固岩土体的最大位移量。附图说明图1为本专利技术主视结构图。图2为本专利技术主视图。图3为图2视图的立体图。图4为图3中B部放大图。图5为图2视图的剖视立体图。图6为本专利技术加上套筒的主视图。图7为本专利技术加上第一伸缩筒的立体图。图8为本专利技术加上第一伸缩筒的立体剖视图。图9为图8中第一伸缩筒内部结构的立体剖视图。图10为本专利技术加上第二伸缩筒的立体图。图11为本专利技术加上第二伸缩筒的立体剖视图。图12为本专利技术第一伸缩筒的剖视图。图13为本专利技术第二伸缩筒的剖视图。图14为本专利技术对中支架的立体图。图15为本专利技术安装在锚孔内的剖视图。具体实施方式以下结合附图1-14对本专利技术的具体实施方式做出进一步详细说明。实施例1,其解决的技术方案是,包括套管1,所述套管1包括多节间隔布置的管体2,最下端的管体2底端连接有底座3,最上端的管体2顶端固定有托盘4,每两个相邻的管体2的圆周端面之间连接有受力弹性体5和特定屈服受力抗拉体6。该实施例使用时,如图1-图5所示,由于有多个管体2,因此多个管体2之间的间隔也有多个,每两个管体2之间设有位移控制部件,该位移控制部件包括受力弹性体5和特定屈服受力抗拉体6,每一层位移控制部件中的特定屈服受力抗拉体6的屈服强度不同,优选的,自下向上的特定屈服受力抗拉体6的屈服强度逐渐增大。受力弹性体5可以是弹簧,特定屈服受力抗拉体6可以是钢铰线。具体使用时,将底座3、套管1的底部和锚孔7之间注入浆体使其下部被锚固,此时的托盘4侧面贴合在所要加固的岩土体上。当所要加固的岩土体发生较小位移趋势时,此时通过托盘4使特定屈服受力抗拉体6产生应力,当特定屈服受力抗拉体6没有达到屈服强度时,此时整个所要加固的岩土体在该本专利技术的锚杆控制下位移量极小;当锚杆所受应力继续增大,此时屈服强度最小的特定屈服受力抗拉体6达到屈服强度,达到屈服强度的特定屈服受力抗拉体6将失效,此时与该失效的特定屈服受力抗拉体6配合的受力弹性体5开始工作,通过其弹性拉力控制所需加固岩土体的位移形变量。当应力继续增大,此时屈服强度第二级的特定屈服受力抗拉体6将达到屈服状态,此时屈服强度第二级的特定屈服受力抗拉体6失效,与其配合的受力弹性体5通过其拉力控制所需加固岩土体的位移形变量。当所加固岩土体的位移继续增大,则下一级次的位移控制部件继续工作。通过设计可以使上一级次的受力弹性体总量程达到30%时,下一级次的特定屈服受力抗拉体6达到屈服强度并相继失效。该实施例1中,通过每一层的位移控制部件中的特定屈服受力抗拉体6和受力弹性体5进行两级位移控制,通过多级次的位移控制部件进行多级位移控制,该专利技术通过整体多级和局部多级的位移控制,对所需加固岩土体的位移进行有效控制,可控性强。实施例2,在实施例1的基础上,所述受力弹性体5的数目与特定屈服受力抗拉体6均为多个。该受力弹性体5和特定屈服受力抗拉体6的数目可以是三个以上,其圆周间隔均布在两管体2之间。...

【技术保护点】
1.一种多级应力及位移控制可伸长锚杆,其特征在于,其解决的技术方案是,包括套管(1),所述套管(1)包括多节间隔布置的管体(2),最下端的管体(2)下端连接有底座(3),最上端的管体(2)上端固定有托盘(4),每两个相邻的管体(2)的圆周端面之间连接有受力弹性体(5)和特定屈服受力拉体(6)。/n

【技术特征摘要】
1.一种多级应力及位移控制可伸长锚杆,其特征在于,其解决的技术方案是,包括套管(1),所述套管(1)包括多节间隔布置的管体(2),最下端的管体(2)下端连接有底座(3),最上端的管体(2)上端固定有托盘(4),每两个相邻的管体(2)的圆周端面之间连接有受力弹性体(5)和特定屈服受力拉体(6)。


2.根据权利要求1所述的一种多级应力及位移控制可伸长锚杆,其特征在于,所述受力弹性体(5)的数目与特定屈服受力拉体(6)均为多个。


3.根据权利要求2所述的一种多级应力及位移控制可伸长锚杆,其特征在于,所述受力弹性体(5)与特定屈服受力拉体(6)数目一致,所述特定屈服受力拉体(6)均匀间隔布置在两个管体(2)之间,所述受力弹性体(5)套在特定屈服受力拉体(6)上。


4.根据权利要求3所述的一种多级应力及位移控制可伸长锚杆,其特征在于,所述受力弹性体(5)外间隔套有套筒(8)。


5.根据权利要求3所述的一种多级应力及位移控制可伸长锚杆,其特征在于,所述受力弹性体(5)外间隔套有第一伸缩筒(9),所述第一伸缩筒(9)的两端连接在相邻的两管体(2)之间。


6.根据权...

【专利技术属性】
技术研发人员:张兴胜付宇陈上元刘时鹏董金玉于怀昌袁广祥王安明刘欣宇宋午阳李建勇
申请(专利权)人:华北水利水电大学
类型:发明
国别省市:河南;41

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1