一种大口径多波段折反前置望远光学系统技术方案

技术编号:23444764 阅读:62 留言:0更新日期:2020-02-28 19:15
本发明专利技术涉及一种大口径多波段折反前置望远光学系统,沿着光线入射方向依次设置次镜、主镜及准直镜组;其中主镜和次镜构成卡塞格林式折反光学结构,所述准直镜组在光轴上依次排列第一透镜、第二透镜、第三透镜,所述第一透镜位于卡塞格林式折反光学结构的焦点以内,所述第一透镜为凸面朝向物侧的负弯月形透镜,所述第二透镜为凸面朝向物侧的平凸透镜,所述第三透镜为凹面朝向物侧的正弯月形透镜,卡塞格林式折反光学结构和准直镜组依次安装于镜架内。

A large aperture and multi band folded and inverted prescaled optical system

【技术实现步骤摘要】
一种大口径多波段折反前置望远光学系统
本专利技术涉及一种光学系统,具体涉及一种大口径多波段折反前置望远光学系统。
技术介绍
红外成像探测系统具有各种天候环境下探测能力强、虚警率低和静默探测的特点,广泛应用于地面、空中平台的目标探测和识别等应用中。空中平台的大口径长焦距红外成像系统,空间分辨率高,具备对远距离地面目标的探测识别能力。同样的,为了获得远距离激光测距能力,增大激光探测光学系统的接收口径是最有效的方法。针对这两种需求,分孔径结构利用两个单独的光学分别接收红外辐射能量和激光反射能量,两光路互不制约,具有设计难度相对较低,其缺点是体积、重量很难约束。共孔径式结构则有共同的前置光学系统和利用分光镜将不同波段光分开的后置学系统。前置光学系统需要合理矫正双波段的像差;分光镜的存在会引入像差,入射光平行入射则会显著降低引入的像差和降低分光镜装调难度。波段光学系统的镜架材料、光学材料的热胀冷缩以及光学材料的温度折射率系数会使镜头光焦度发生变化,产生离焦现象,使成像质量恶化。在中国专利CN109298517《一种多光谱同轴折反式无焦光学系统》,介绍了一种折反式无焦光学系统,也即共孔径光学系统中的前置望远系统,系统利用卡式折反结构加上一次聚焦在进行准直的光学设计,实现了0.4-0.9μm和3-5μm两个波段的无焦设计,但是该设计虽然采用了多达七片透镜,仍没有实现系统的消热差设计,整个光学系统的实用性严重不足。现有的前置望远折反光学系统,都存在消热差能力差,导致整个光学系统实用性存在严重限制的问题。
技术实现思路
<br>本专利技术的目的是针对现有技术的不足,提供一种大口径多波段折反前置望远光学系统,它适用于红外和激光波段,在满足大口径、易加工和易装调的同时,还能够实现光学式被动消热差,在-40~50℃温度范围内具有良好的成像效果。本专利技术的目的是这样实现的:一种大口径多波段折反前置望远光学系统,沿着光线入射方向依次设置次镜、主镜及准直镜组;其中主镜和次镜构成卡塞格林式折反光学结构,所述准直镜组在光轴上依次排列第一透镜、第二透镜、第三透镜,所述第一透镜位于卡塞格林式折反光学结构的焦点以内,所述第一透镜为凸面朝向物侧的负弯月形透镜,所述第二透镜为凸面朝向物侧的平凸透镜,所述第三透镜为凹面朝向物侧的正弯月形透镜,卡塞格林式折反光学结构和准直镜组依次安装于镜架内。所述第一透镜、第二透镜、第三透镜由多光谱CVDZnS材料制成。所述光学系统主镜、次镜的材料为熔石英、微晶玻璃或碳化硅。所述第一透镜、第二透镜或第三透镜至少设有一个非球面。所述主镜的反射球面的曲率半径为-390mm~-380mm,所述次镜的反射球面曲率半径为-200mm~-190mm,所述第一透镜的凸球面的曲率半径为105mm~115mm,所述第一透镜的凹球面的曲率半径为35mm~45mm,所述第二透镜的凸球面的曲率半径为90mm~100mm,所述第三透镜的凹面顶点曲率半径为-60mm~-50mm,所述第三透镜的凸球面的曲率半径为-50mm~-40mm。所述第三透镜朝向物面的镜面为非球面,该镜面的偶次项非球面方程中,非球面系数:4th为-1.5529e-006,6th为-8.3530e-010,8th为1.5821e-012,10th为-3.7671e-015。所述主镜的反射球面的厚度为140.4mm,所述主镜的反射球面的厚度为59.2mm,所述第一透镜的凸球面的厚度为17mm,所述第一透镜的凹球面的厚度为83.8mm,所述第二透镜的凸球面的厚度为4.5mm,所述第三透镜朝向第二透镜的镜面的厚度为17mm,所述第三透镜的凸球面的厚度为35.8mm。所述镜架材料为铝合金材料、钛合金、因瓦合金或碳素复合纤维。所述主镜的口径为280mm。光学系统工作的温度范围为-40-50℃。光学系统可准直1.064μm或1.5μm激光和3.7-4.8μm中波红外波段。采用上述方案,其有益效果为,本专利技术采用卡塞格林式折反光学结构,辅以三片透镜对反射出的会聚光进行准直,本专利技术中,大口径反射主镜接收中波和激光两波段的光线,其口径高大,收光能力强;反射至次镜的光束被进一步汇聚至准直镜组,经次镜反射后光传播至准直镜组,准直镜组将光束准直输出。由于前置望远光学系统为独立设计,独立消除像差和热差,准直光束输入分光镜时引入的像差较小,为其后置光学系统也能够实现独立的消像差设计,有利于后置成像光路的匹配、装调,准直输出的光束有利于分光处理。准直镜组中第一透镜和第二透镜主要校正系统像差和平衡热差,第三透镜主要用于将汇聚后发散的光束准直,并进一步平衡残余像差,准直镜组镜头分别校正了七种初级像差,热差则根据镜架变化长度予以平衡,准直镜组既然分担了整个系统的光焦度,同时准直镜组需要单独完成消色差,还要要匹配折反光学结构进行整个光学系统的热差调节,本专利技术提供了一种结构简单适用于红外波段和激光波段的共孔径前置望远光学系统,平行输出的双波段光束,很容易实现分光。本专利技术在兼顾了折反镜组、准直镜组,同时本专利技术全系统匹配予以整合两个镜组组成的整体结构在外波段和激光波段两个波段进行消像差和热差。本设计可以作为机载吊舱、跟踪瞄准等光电系统的光学系统。本专利技术在-40~50℃温度范围内其可靠性强。下面结合附图和具体实施例对本专利技术作进一步说明。附图说明图1为本专利技术的结构示意图;图2为本专利技术在中波红外波段无焦模式下的-40℃温度范围内的MTF图;图3为本专利技术在中波红外波段无焦模式下的20℃温度范围内的MTF图;图4为本专利技术在中波红外波段无焦模式下的50℃温度范围内的MTF图;图5为本专利技术在1064nm激光波段无焦模式下的-40℃温度范围内的MTF图;图6为本专利技术在1064nm激光波段无焦模式下的20℃温度范围内的MTF图;图7为本专利技术在1064nm激光波段无焦模式下的50℃温度范围内的MTF图。附图中,110为次镜,120为主镜,200为准直镜组,210为第一透镜,220为第二透镜,230为第三透镜。具体实施方式参照附图,将详细描述本专利技术的具体实施方案。参见图1至图7,一种大口径多波段折反前置望远光学系统的一种实施例,一种大口径多波段折反前置望远光学系统,沿着光线入射方向依次设置次镜110、主镜120及准直镜组200;其中主镜120和次镜110构成卡塞格林式折反光学结构,所述主镜120的口径为280mm,收光能力强,所述光学系统主、次镜110的材料为熔石英、微晶玻璃或碳化硅,所述主镜120的反射球面的曲率半径为-390mm~-380mm,所述次镜110的反射球面曲率半径为-200mm~-190mm。所述准直镜组200在光轴上排列第一透镜210、第二透镜220、第三透镜230,所述第一透镜210、第二透镜220、第三透镜230由多光谱CVDZnS材料制成,CVDZnS易于加工,CVDZnS的价格低、硬度高,断裂强度是硒化锌的两倍,抗恶劣环境的能力强。所述第一透镜21本文档来自技高网...

【技术保护点】
1.一种大口径多波段折反前置望远光学系统,其特征在于:沿着光线入射方向依次设置次镜(110)、主镜(120)及准直镜组(200);其中主镜(120)和次镜(110)构成卡塞格林式折反光学结构,所述准直镜组(200)在光轴上依次排列第一透镜(210)、第二透镜(220)、第三透镜(230),所述第一透镜(210)位于卡塞格林式折反光学结构的焦点以内,所述第一透镜(210)为凸面朝向物侧的负弯月形透镜,所述第二透镜(220)为凸面朝向物侧的平凸透镜,所述第三透镜(230)为凹面朝向物侧的正弯月形透镜,卡塞格林式折反光学结构和准直镜组(200)依次安装于镜架内。/n

【技术特征摘要】
1.一种大口径多波段折反前置望远光学系统,其特征在于:沿着光线入射方向依次设置次镜(110)、主镜(120)及准直镜组(200);其中主镜(120)和次镜(110)构成卡塞格林式折反光学结构,所述准直镜组(200)在光轴上依次排列第一透镜(210)、第二透镜(220)、第三透镜(230),所述第一透镜(210)位于卡塞格林式折反光学结构的焦点以内,所述第一透镜(210)为凸面朝向物侧的负弯月形透镜,所述第二透镜(220)为凸面朝向物侧的平凸透镜,所述第三透镜(230)为凹面朝向物侧的正弯月形透镜,卡塞格林式折反光学结构和准直镜组(200)依次安装于镜架内。


2.根据权利要求1所述的一种大口径多波段折反前置望远光学系统,其特征在于:所述第一透镜(210)、第二透镜(220)、第三透镜(230)由多光谱CVDZnS材料制成。


3.根据权利要求1所述的一种大口径多波段折反前置望远光学系统,其特征在于:光学系统主镜(120)、次镜(110)的材料为熔石英、微晶玻璃或碳化硅。


4.根据权利要求1所述的一种大口径多波段折反前置望远光学系统,其特征在于:所述第一透镜(210)、第二透镜(220)或第三透镜(230)至少设有一个非球面。


5.根据权利要求4所述的一种大口径多波段折反前置望远光学系统,其特征在于:所述主镜(120)的反射球面的曲率半径为-390mm~-380mm,所述次镜(110)的反射球面曲率半径为-200mm~-190mm,所述第一透镜(210)的凸球面的曲率半径为105mm~115mm,所述第一透镜(210)的凹球面的曲率半径为35mm~45mm,所述第二透镜(...

【专利技术属性】
技术研发人员:郑昌盛
申请(专利权)人:成都浩孚科技有限公司
类型:发明
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1