基于温差电压场效应管传感装置与温度测量方法制造方法及图纸

技术编号:23286293 阅读:25 留言:0更新日期:2020-02-08 16:53
本发明专利技术公开了基于温差电压场效应管装置,包括半导体衬底和依次设置在半导体衬底上的绝缘体层和栅极,半导体衬底上设有漏区和源区,两区上分别对应有漏极和源极。与栅极串联的温差电压发生装置,由三个金属导流片、P型硅半导体热电材料和N型硅半导体热电材料串联而成。本发明专利技术将基于塞贝克效应的温差电压发生装置与N沟道增强型绝缘栅型场效应管结合,通过金属导流片之间的温差大小控制输出电流,检测电流大小,实现温度的检测等功能。

Sensor device and temperature measurement method based on temperature difference and voltage FET

【技术实现步骤摘要】
基于温差电压场效应管传感装置与温度测量方法
本专利技术涉及温度传感器
,具体涉及一种基于塞贝克效应温差电压场效应管传感装置与温度测量方法。
技术介绍
塞贝克效应是指将不同材料的导体(或半导体)A和导体(或半导体)B的两端相互紧密接触,当相互接触的一端温度大于另一端,便因温度不等而产生电动势和电流的温差电现象。这种因温差而产生的电动势与材料性质、温差大小等因素有关。根据塞贝克效应可利用废热发电,具有重要的应用价值。可是目前的塞贝克效应实验装置,存在两个问题:一是仅限于测量半导体温差与电动势的关系,缺少考虑测量导体温差与输出电流的关系;二是没有考虑负载影响,接入测温负载后,负载电路会对测量电路产生影响。场效应管是电压控制的一种放大器件,是组成数字集成电路的基本单元。其中,垂直双扩散金属氧化物半导体场效应管是场效应管中的一种,其具有接近无限大的静态输入阻抗特性,具有较快的开关时间等优点,并广泛的应用于电机调速、逆变器、不间断电源、电子开关、高保真音响、汽车电器以及电子镇流器等领域中。
技术实现思路
针对现有技术中的上述不足,本专利技术提供的基于温差电压场效应管装置不仅能够感受温差,并能通过温差调整自身器件性能。为了达到上述专利技术目的,本专利技术采用的技术方案为:基于温差电压场效应管装置,包括半导体衬底和依次设置在半导体衬底上的绝缘体层和栅极,半导体层上设有漏区和源区,两区上分别对应有漏极和源极,源区和漏区的掺杂类型相同且与半导体衬底的掺杂类型相反,半导体衬底的掺杂浓度为低掺杂,源区和漏区的掺杂浓度均为重掺杂。基于塞贝克效应的温差电压发生装置通过一个基准电源与场效应管相连接,该装置由正极金属导流片,P型硅半导体热电材料,桥连金属导流片,N型硅半导体热电材料和负极金属导流片依次串联而成。进一步地:源区和漏区的材质为重掺杂半导体。进一步地:绝缘体层的材质为化合物半导体(如二氧化硅)或能隙较大的异质外延膜。进一步地:栅极、源极和漏极的材质均为金属。进一步地:源区和漏区分别与半导体衬底形成有耗尽层。进一步地:半导体衬底的掺杂类型为P型掺杂或N型掺杂。进一步地:正极金属导流片、桥连金属导流片和负极金属导流片均为导电性和导热性良好的金属。进一步地:P型硅半导体热电材料和N型硅半导体热电材料的掺杂浓度均为重掺杂。进一步地:温差电压发生装置在电路连接方面采用正极金属导流片,P型硅半导体热电材料,桥连金属导流片,N型硅半导体热电材料和负极金属导流片依次串联的方式。进一步地:基于温差电压场效应管装置包括N沟道增强型绝缘栅型场效应管,温差电压发生装置和一个基准电源。本专利技术的有益效果为:在本专利技术中,场效应晶体管跨导为漏极电流变化量与栅极电压变化量的比值,其体现出栅极电压对漏极电流的控制能力。本专利技术中基于塞贝克效应温差电压发生装置的引入,当上下导流片之间形成温差时,由于温差电压发生装置与场效应管串联,因此在场效应管栅极会形成电压,源漏极之间产生电流,所产生电流的大小完全取决于导流片之间的温差大小。本专利技术中温差电压发生装置与场效应管装置的结合在检测温差方面具有较高的灵敏度,可用于温度传感器的制作,例如对过大温差进行报警。基于温差电压场效应管装置的N沟道增强型绝缘栅型场效应管:其中绝缘体层为氧化物,N型的源区和N型的漏区分别与P型衬底形成耗尽层,此时源区和漏区之间没有载流子的移动。当给器件的栅极施加正偏压时,在该正偏压的作用下,P型衬底的少数载流子聚集到靠近栅极的表层。当栅极电压达到阈值电压时,在漏源之间形成导电沟道,使得漏源之间导通。将N沟道增强型绝缘栅型场效应管的栅极与温差电压发生装置的一端通过一个基准电源串联连接。由于场效应管存在阈值电压,因此根据该阈值电压的大小来增设一个相应电压值的电源,即基准电源,以此实现由温差所产生的电压能够充分的运用到引起电流大小的改变上,而不是用于达到阈值电压使沟道导通,实现温差的充分利用,使温度测量更加准确。在温差电压发生装置中,当上端金属导流片受热时,使上下两端的金属导流片建立起温差,在温差的作用下,N型硅半导体受热材料和P型硅半导体受热材料的多数载流子都流向冷端,由此形成定向电流。将电流输出端即正极金属导流片与N沟道增强型绝缘栅型场效应管的栅极相连,此时在N沟道增强型绝缘栅型场效应管的栅极形成正偏压,在该正偏压的作用下,P型硅半导体的少数载流子便聚集到靠近栅极的表层。由于基准电源的存在,使漏源之间在温差未建立之前已形成导电沟道。温差一旦产生,施加在N沟道增强型绝缘栅型场效应管的栅极的正偏压就会增大,使漏源之间形成漏极电流,可实现从零开始的温差与漏极电流的一一对应。在保证漏源极电压能使N沟道增强型绝缘栅型场效应管工作在恒流区的条件下,漏极电流的大小仅取决于温差的大小。由此实现了温差对漏极电流的控制,通过检测电流大小得知温度变化。该装置中存在一个基准电源,且其电源电压数值的大小与N沟道增强型绝缘栅型场效应管阈值电压VT相等,N沟道增强型绝缘栅型场效应管工作在恒流区时沟道电流为:其中,αP为P型硅半导体热电材料的塞贝克系数,αN为N型硅半导体热电材料的塞贝克系数,T1为工作端或热端温度,T0为参考端或冷端温度,W为导电沟道宽度,L为导电沟道长度,μ为电荷载流子迁移率,Cox为绝缘层单位面积的电容,VT为阈值电压。由此建立起N沟道增强型绝缘栅型场效应管的沟道电流与温差的函数关系,通过检测流经场效应管沟道电流的大小可得知温差的变化。具有优点:1.测温电路和温度测量输出电路分开,避免了温度输出电路对测温电路的影响,提高了测量温度的可靠性。附图说明图1为本专利技术中基于温差电压场效应管装置的结构图。其中:1、栅极;2、绝缘体层;3、源区;4、漏区;5、半导体衬底;6、耗尽层;7、源极;8、漏极;9、正极金属导流片;10、P型硅半导体热电材料;11、桥连金属导流片;12、N型硅半导体热电材料;13、负极金属导流片;14、导电沟道;15、基准电源。具体实施方式下面对本专利技术的具体实施方式进行描述,以便于本
的技术人员理解本专利技术,显然,本专利技术不限于具体实施方式的范围,对本
的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本专利技术的精神和范围内,都属于本专利技术保护的范围。基于温差电压场效应管装置,包括半导体衬底5和依次设置在半导体衬底5上的绝缘体层2和栅极1,所述半导体衬底5上设有源区3和漏区4,两区上分别对应有源极7和漏极8,所述源区3和漏区4的掺杂类型相同且与半导体衬底5的掺杂类型相反,所述半导体衬底5的掺杂浓度为低掺杂,所述源区3和漏区4的掺杂浓度均为重掺杂。基于塞贝克效应的温差电压发生装置通过一个基准电源15与场效应管相连接,该装置由正极金属导流片9,P型硅半导体热电材料10,桥连金属导流片11,N型硅半导体热电材料12和负极金属导流片13依次串联而成。在本专利技术的实施例中,源区3和漏区4的材质为重掺杂半导体。在本发本文档来自技高网
...

【技术保护点】
1.基于温差电压场效应管装置,其特征在于,基于塞贝克效应的温差电压发生装置通过一个基准电源(15)与场效应管相连接,该装置由正极金属导流片(9),P型硅半导体热电材料(10),桥连金属导流片(11),N型硅半导体热电材料(12)和负极金属导流片(13)依次串联而成。/n

【技术特征摘要】
1.基于温差电压场效应管装置,其特征在于,基于塞贝克效应的温差电压发生装置通过一个基准电源(15)与场效应管相连接,该装置由正极金属导流片(9),P型硅半导体热电材料(10),桥连金属导流片(11),N型硅半导体热电材料(12)和负极金属导流片(13)依次串联而成。


2.根据权利要求1所述的温差电压场效应管装置,其特征在于,所述温差电压发生装置在电路连接方面采用正极金属导流片(9),P型硅半导体热电材料(10),桥连金属导流片(11),N型硅半导体热电材料(12)和负极金属导流片(13)依次串联的方式。


3.根据权利要求1所述的温差电压场效应管装置,其特征在于,所述基于温差电压场效应管装置包括N沟道增强型绝缘...

【专利技术属性】
技术研发人员:刘灿昌栾军超张鑫越苏红建周英超邵金菊
申请(专利权)人:山东理工大学
类型:发明
国别省市:山东;37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1