一种基于空间行驻波衰减的微波含水率测量装置及其测量方法制造方法及图纸

技术编号:23189945 阅读:22 留言:0更新日期:2020-01-24 15:55
本发明专利技术一种基于空间行驻波衰减的微波含水率测量装置及其测量方法,属于微波应用技术领域,装置由微波发射探头、样品容器、被测材料、微波接收探头、滑动平台、丝杠导轨单元、电机单元、重量监测单元及信号显示控制单元组成。本发明专利技术样品容器位于微波发射探头和微波接收探头之间,微波接收探头固定于丝杠导轨单元的滑动平台上,能够在水平方向自由移动,实现空间行驻波信号的连续测量。信号显示控制单元根据行驻波波腹点功率衰减建立含水率反演公式,消除多重反射效应引起的测量误差。本发明专利技术提高测量精度,使测量结果不受材料厚度及堆积密度影响,可以实现对粮食、饲料、木料、砂石等颗粒材料的含水率的快速、无损测量。

A microwave moisture content measurement device based on space traveling standing wave attenuation and its measurement method

【技术实现步骤摘要】
一种基于空间行驻波衰减的微波含水率测量装置及其测量方法
本专利技术属于微波应用
,具体涉及一种基于空间行驻波衰减的微波含水率测量装置及其测量方法。
技术介绍
在工农业生产过程中,水分含量一直是产品质量评价的一个重要指标。例如,对于粮食存储、运输、加工等环节中,含水率过高易引起粮食发芽、发霉、不易存储,过低则会破坏粮食内部的物理结构,降低其营养价值;在建筑行业,混凝土砂浆的水分含量直接影响建筑物的成型强度;在木材加工过程中,为防止产品的弯曲或者开裂,需要严格控制含水率范围。因此,实现材料含水率的快速、高精度无损检测成为高效、精准工农业的一种迫切需求。含水率检测的直接方法是湿基法,采用物理或化学方式去除样品中水分,根据质量变化计算水分含量,这种方法准确率高,但是测量时间长,效率低,一般只作为标定方法。含水率测量的间接方法包含电阻法、电容法、射线法、红外法及微波法等,每种方法的特点和适用范围各不相同。微波自由空间法含水率测量是近些年发展起来的一项新技术,由于具备实时、无损、非接触、无需特别准备样品等优点,非常适用于颗粒材料含水率的实时连续测量。微波自由空间传输法含水率测量过程中,被测材料放置在两个天线之间,根据微波能量衰减和相位变化,换算出材料水分含量。衰减及相变这两个参数的测量精度是影响含水率测量准确性的关键因素。测量误差主要来源于微波在传输过程中在样品内部及天线探头与样品之间的多重反射效应。现有的微波自由空间透射式含水率测量技术,要求材料厚度具有10dB以上衰减,以减少微波信号在样品内部的多重反射,对于样品厚度较薄或含水率较低的情况无法完成准确测量。同时,微波天线探头与样品表面之间的信号多重反射无法避免,频率相同方向相反的微波信号在空间中叠加形成行驻波干扰,直接影响微波衰减及相变的测量精度,限制了微波含水率测量装置的实际应用。
技术实现思路
针对现有技术存在的上述缺陷,为了提高自由空间微波含水率测量精度,减小多重反射误差,本专利技术的目的在于提供一种基于空间行驻波衰减的微波含水率测量装置及其测量方法,建立一种微波天线距离可调节的测量方式,使被测样品不受厚度限制,通过多参数同步采集消除堆积密度影响,得到材料含水率。本专利技术通过如下技术方案实现:一种基于空间行驻波衰减的微波含水率测量装置,包括微波发射探头1、样品容器2、被测材料3、微波接收探头4、滑动平台5、丝杠导轨单元6、电机单元7、重量监测单元8及信号显示控制单元9;其中,所述的微波发射探头1将直流电压信号转换为微波信号,由喇叭天线水平方向发出;所述的样品容器2位于微波发射探头1和微波接收探头4之间,并放置于重量监测单元8上;微波与被测材料3相互作用后,透射的微波信号由微波接收探头4的喇叭天线接收;微波接收探头4固定安装于丝杠导轨单元6的滑动平台5上;电机单元7的电动机牵引丝杠导轨单元6的滚珠丝杠转动,带动滑动平台5沿着直线导轨在水平方向自由移动;不同位置的微波透射信号由微波接收探头4输出至信号显示控制单元9中;所述的信号显示控制单元9实现对电机单元7的电动机转动控制,同时采集微波接收探头4输出的透射微波信号、重量监测单元8输出的重量信号,并进行运算输出被测材料3的含水率信息。进一步地,所述的微波发射探头1由微波腔体振荡器和喇叭天线组成,微波信号由微波腔体振荡器内部的耿氏二极管产生,有效频率范围为4~27GHz,功率范围为5~30mw;喇叭天线采用角锥或圆锥形,有效增益不小于10dBi。进一步地,所述的样品容器2为方形盒子,厚度、质量和容积固定不变,材质为陶瓷或亚克力等低介电损耗材质。进一步地,所述的被测材料3为粮食、饲料、木料等颗粒状含水材料,测量时要求均匀地装满样品容器。进一步地,所述的微波接收探头4由喇叭天线和腔体检波器组成,透射微波信号由腔体检波器中的晶体检波管进行检波,输出直流电压信号;微波接收探头4和微波发射探头1的喇叭天线高度相同,处于同一微波传播轴线上。进一步地,所述的滑动平台5安装在丝杠导轨单元6上,有效滑动距离大于1个微波波长,保证微波接收探头4能够获得一个以上完整周期的测量信号。进一步地,所述的信号显示控制单元9包括A/D转换模块、单片机运算控制单元、电机驱动模块、显示输出模块及电源模块;其中A/D转换模块实现将微波接收探头4输出的模拟信号转换为数字信号,单片机运算控制单元实现对A/D转换模块及重量监测单元8输出的数字信号采集、内部运算处理、电机驱动模块的控制、显示输出模块的控制功能;电源模块为系统各单元电路提供所需的直流电源。本专利技术的一种基于空间行驻波衰减的微波含水率测量装置能够有效消除多重反射效应引起的测量误差,原理如下:微波与被测材料作用后产生透射信号:Ei=E0exp(j(ωt-kz))(1)式中,E0为透射波电场强度,指数项中ω为微波频率、t为微波传播时间、k为波数、z为微波传播距离,透射波在微波接收天线端口发生反射,空间区域中频率相同方向相反的微波叠加形成行驻波:ET=BE0exp(j(ωt-kz))(2)式中,B=(1+Γ2+2Γcos2kz)1/2表示驻波分量,大小随着微波传播距离z周期变化,Γ为天线反射系数,当cos2kz=1时,行驻波处于波腹点,此时B=1+Γ,对应空间场强具有最大值:|ET|max=E0(1+Γ)(3)天线反射系数Γ与天线结构相关,透射波电场强度E0与样品含水率相关。设不放样品时空间行驻波波腹点场强为|ETe|max=E0e(1+Γ),放入样品后|ETs|max=E0s(1+Γ),其中,E0e为不放样品时透射波场强、E0s为放入样品后透射波场强,则对应波腹点功率衰减:上式说明行驻波波腹点功率衰减只与透射波场强相关,与界面反射系数Γ无关。本专利技术装置通过测量行驻波波腹点功率衰减,建立反演公式,消除多重反射影响,实现被测样品含水率的快速无损检测。一种基于空间行驻波衰减的微波含水率测量方法,具体步骤如下:S1、透射微波空载测量;样品容器2为空,由信号显示控制单元9控制电机单元7转动,使微波接收探头4的喇叭天线端口由紧贴样品容器2的表面逐渐远离,与此同时信号显示控制单元9对微波接收探头4的输出检波电压信号进行连续采集,比较记录检波电压信号空载最大值|ETe|max;S2、透射微波满载测量;被测材料3装满样品容器2后,系统重复S1测量步骤,比较记录检波电压信号满载最大值|ETs|max;S3、样品堆积密度同步采集;由信号显示控制单元9读取重量监测单元8输出的样品及容器总重量mt,利用如下公式计算堆积密度:式中,mc为容器重量、vs为容器容积,两者为常量只与样品容器相关,预先存储于信号显示控制单元9内部;S4、样品含水率运算;由信号显示控制单元9内部单片机控制单元根据如下公式对材料含水率M进行运算:式中a0、b0为拟合系数,当被测样品3的具体材料确定后,拟合系数为本文档来自技高网
...

【技术保护点】
1.一种基于空间行驻波衰减的微波含水率测量装置,其特征在于,包括微波发射探头(1)、样品容器(2)、被测材料(3)、微波接收探头(4)、滑动平台(5)、丝杠导轨单元(6)、电机单元(7)、重量监测单元(8)、及信号显示控制单元(9);其中,所述的微波发射探头(1)将直流电压信号转换为微波信号,由喇叭天线水平方向发出;所述的样品容器(2)位于微波发射探头(1)和微波接收探头(4)之间,并放置于重量监测单元(8)上;微波与被测材料(3)相互作用后,透射的微波信号由微波接收探头(4)的喇叭天线接收;微波接收探头(4)固定安装于丝杠导轨单元(6)的滑动平台(5)上;电机单元(7)的电动机牵引丝杠导轨单元(6)的滚珠丝杠转动,带动滑动平台(5)沿着直线导轨在水平方向自由移动;不同位置的微波透射信号由微波接收探头(4)输出至信号显示控制单元(9)中;所述的信号显示控制单元(9)实现对电机单元(7)的电动机转动控制,同时采集微波接收探头(4)输出的透射微波信号、重量监测单元(8)输出的重量信号,并进行运算输出被测材料(3)的含水率信息。/n

【技术特征摘要】
1.一种基于空间行驻波衰减的微波含水率测量装置,其特征在于,包括微波发射探头(1)、样品容器(2)、被测材料(3)、微波接收探头(4)、滑动平台(5)、丝杠导轨单元(6)、电机单元(7)、重量监测单元(8)、及信号显示控制单元(9);其中,所述的微波发射探头(1)将直流电压信号转换为微波信号,由喇叭天线水平方向发出;所述的样品容器(2)位于微波发射探头(1)和微波接收探头(4)之间,并放置于重量监测单元(8)上;微波与被测材料(3)相互作用后,透射的微波信号由微波接收探头(4)的喇叭天线接收;微波接收探头(4)固定安装于丝杠导轨单元(6)的滑动平台(5)上;电机单元(7)的电动机牵引丝杠导轨单元(6)的滚珠丝杠转动,带动滑动平台(5)沿着直线导轨在水平方向自由移动;不同位置的微波透射信号由微波接收探头(4)输出至信号显示控制单元(9)中;所述的信号显示控制单元(9)实现对电机单元(7)的电动机转动控制,同时采集微波接收探头(4)输出的透射微波信号、重量监测单元(8)输出的重量信号,并进行运算输出被测材料(3)的含水率信息。


2.如权利要求1所述的一种基于空间行驻波衰减的微波含水率测量装置,其特征在于,所述的微波发射探头(1)由微波腔体振荡器和喇叭天线组成,微波信号由微波腔体振荡器内部的耿氏二极管产生,有效频率范围为4~27GHz,功率范围为5~30mw;喇叭天线采用角锥或圆锥形,有效增益不小于10dBi。


3.如权利要求1所述的一种基于空间行驻波衰减的微波含水率测量装置,其特征在于,所述的样品容器(2)为方形盒子,厚度、质量和容积固定不变,材质为陶瓷或亚克力。


4.如权利要求1所述的一种基于空间行驻波衰减的微波含水率测量装置,其特征在于,所述的被测材料(3)为粮食、饲料或木料的颗粒状含水材料,测量时要求均匀地装满样品容器。


5.如权利要求1所述的一种基于空间行驻波衰减的微波含水率测量装置,其特征在于,所述的微波接收探头(4)由喇叭天线和腔体检波器组成,透射微波信号由腔体检波器中的晶体检波管进行检波,输出直流电压信号;微波接收探头(4)和微波发射探头(1)的喇叭天线高度相同,处于同一微波传播轴线上。


6.如权利要求1所述的...

【专利技术属性】
技术研发人员:李陈孝于小庭徐艳蕾宋乾丁文超马小华
申请(专利权)人:吉林农业大学
类型:发明
国别省市:吉林;22

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1